2,788 research outputs found

    Estimating graph parameters with random walks

    Full text link
    An algorithm observes the trajectories of random walks over an unknown graph GG, starting from the same vertex xx, as well as the degrees along the trajectories. For all finite connected graphs, one can estimate the number of edges mm up to a bounded factor in O(trel3/4m/d)O\left(t_{\mathrm{rel}}^{3/4}\sqrt{m/d}\right) steps, where trelt_{\mathrm{rel}} is the relaxation time of the lazy random walk on GG and dd is the minimum degree in GG. Alternatively, mm can be estimated in O(tunif+trel5/6n)O\left(t_{\mathrm{unif}} +t_{\mathrm{rel}}^{5/6}\sqrt{n}\right), where nn is the number of vertices and tunift_{\mathrm{unif}} is the uniform mixing time on GG. The number of vertices nn can then be estimated up to a bounded factor in an additional O(tunifmn)O\left(t_{\mathrm{unif}}\frac{m}{n}\right) steps. Our algorithms are based on counting the number of intersections of random walk paths X,YX,Y, i.e. the number of pairs (t,s)(t,s) such that Xt=YsX_t=Y_s. This improves on previous estimates which only consider collisions (i.e., times tt with Xt=YtX_t=Y_t). We also show that the complexity of our algorithms is optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show that, given either mm or the mixing time of GG, we can compute the "other parameter" with a self-stopping algorithm

    Fast rate estimation of an unitary operation in SU(d)

    Full text link
    We give an explicit procedure based on entangled input states for estimating a SU(d)SU(d) operation UU with rate of convergence 1/N21/N^2 when sending NN particles through the device. We prove that this rate is optimal. We also evaluate the constant CC such that the asymptotic risk is C/N2C/N^2. However other strategies might yield a better const ant CC.Comment: 8 pages, 1 figure Rewritten version, accepted for publication in Phys. Rev. A. The introduction is richer, the "tool section" on group representations has been suppressed, and a section proving that the 1/N^2 rate is optimum has been adde

    On the generalization of quantum state comparison

    Full text link
    We investigate the unambiguous comparison of quantum states in a scenario that is more general than the one that was originally suggested by Barnett et al. First, we find the optimal solution for the comparison of two states taken from a set of two pure states with arbitrary a priori probabilities. We show that the optimal coherent measurement is always superior to the optimal incoherent measurement. Second, we develop a strategy for the comparison of two states from a set of N pure states, and find an optimal solution for some parameter range when N=3. In both cases we use the reduction method for the corresponding problem of mixed state discrimination, as introduced by Raynal et al., which reduces the problem to the discrimination of two pure states only for N=2. Finally, we provide a necessary and sufficient condition for unambiguous comparison of mixed states to be possible.Comment: 8 pages, 4 figures, Proposition 1 corrected, appendix adde

    Quantum mechanics explained

    Get PDF
    The physical motivation for the mathematical formalism of quantum mechanics is made clear and compelling by starting from an obvious fact - essentially, the stability of matter - and inquiring into its preconditions: what does it take to make this fact possible?Comment: 29 pages, 5 figures. v2: revised in response to referee comment

    Relativistic Doppler effect in quantum communication

    Get PDF
    When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.Comment: 10 pages LaTe

    Minimal optimal generalized quantum measurements

    Get PDF
    Optimal and finite positive operator valued measurements on a finite number NN of identically prepared systems have been presented recently. With physical realization in mind we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N=7 and verify that they are minimal up to N=5. We finally propose an expression which gives the size of the minimal optimal measurements for arbitrary NN.Comment: 9 pages, Late

    El Col·legi de notaris de Cervera

    Get PDF
    corecore