24 research outputs found

    Bench-to-bedside review: The initial hemodynamic resuscitation of the septic patient according to Surviving Sepsis Campaign guidelines – does one size fit all?

    Get PDF
    The Surviving Sepsis Campaign guidelines for the management of severe sepsis and septic shock recommend that the initial hemodynamic resuscitation be done according to the protocol used by Rivers and colleagues in their well-known early goal-directed therapy (EGDT) study. However, it may well be that their patients were much sicker on admission than many other septic patients. Compared with other populations of septic patients, the patients of Rivers and colleagues had a higher incidence of severe comorbidities, a more severe hemodynamic status on admission (excessively low central venous oxygen saturation [ScvO2], low central venous pressure [CVP], and high lactate), and higher mortality rates. Therefore, it may well be that these patients arrived to the hospital in late untreated hypovolemic sepsis, which may have been due, in part at least, to low socioeconomic status and reduced access to health care. The EGDT protocol uses target values for CVP and ScvO2 to guide hemodynamic management. However, filling pressures do not reliably predict the response to fluid administration, while the ScvO2 of septic patients is characteristically high due to decreased oxygen extraction. For all these reasons, it seems that the hemodynamic component of the Surviving Sepsis Campaign guidelines cannot be applied to all septic patients, particularly those who develop sepsis during their hospital stay

    Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists

    Get PDF
    Abstract Introduction Several studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States. Methods A survey including 33 specific questions was emailed to 2,500 randomly selected active members of the ASA and to active ESA members. Results Overall, 368 questionnaires were completed, 57.1% from ASA and 42.9% from ESA members. Cardiac output is monitored by only 34% of ASA and ESA respondents (P = 0.49) while central venous pressure is monitored by 73% of ASA respondents and 84% of ESA respondents (P < 0.01). Specifically, the pulmonary artery catheter is being used much more frequently in the US than in Europe in the setup of high-risk surgery (85.1% vs. 55.3% respectively, P < 0.001). Clinical experience, blood pressure, central venous pressure, and urine output are the most widely indicators of volume expansion. Finally, 86.5% of ASA respondents and 98.1% of ESA respondents believe that their current hemodynamic management could be improved. Conclusions In conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States

    Alternatives to the Swan-Ganz catheter

    Get PDF
    While the pulmonary artery catheter (PAC) is still interesting in specific situations, there are many alternatives. A group of experts from different backgrounds discusses their respective interests and limitations of the various techniques and related measured variables. The goal of this review is to highlight the conditions in which the alternative devices will suffice and when they will not or when these alternative techniques can provide information not available with PAC. The panel concluded that it is useful to combine different techniques instead of relying on a single one and to adapt the "package" of interventions to the condition of the patient. As a first step, the clinical and biologic signs should be used to identify patients with impaired tissue perfusion. Whenever available, echocardiography should be performed as it provides a rapid and comprehensive hemodynamic evaluation. If the patient responds rapidly to therapy, either no additional monitoring or pulse wave analysis (allowing continuous monitoring in case potential degradation is anticipated) can be applied. If the patient does not rapidly respond to therapy or complex hemodynamic alterations are observed, pulse wave analysis coupled with TPTD is suggested

    Iatrogenic hemodilution: a possible cause for avoidable blood transfusions?

    No full text
    corecore