31,512 research outputs found
On the spin-1/2 Aharonov-Bohm problem in conical space: bound states, scattering and helicity nonconservation
In this work the bound state and scattering problems for a spin-1/2 particle
undergone to an Aharonov-Bohm potential in a conical space in the
nonrelativistic limit are considered. The presence of a \delta-function
singularity, which comes from the Zeeman spin interaction with the magnetic
flux tube, is addressed by the self-adjoint extension method. One of the
advantages of the present approach is the determination of the self-adjoint
extension parameter in terms of physics of the problem. Expressions for the
energy bound states, phase-shift and matrix are determined in terms of the
self-adjoint extension parameter, which is explicitly determined in terms of
the parameters of the problem. The relation between the bound state and zero
modes and the failure of helicity conservation in the scattering problem and
its relation with the gyromagnetic ratio are discussed. Also, as an
application, we consider the spin-1/2 Aharonov-Bohm problem in conical space
plus a two-dimensional isotropic harmonic oscillator.Comment: 19 pages, 1 table. Matches published version. arXiv admin note: text
overlap with arXiv:1112.0265, arXiv:1203.309
Global Alfven Wave Heating of the Magnetosphere of Young Stars
Excitation of a Global Alfven wave (GAW) is proposed as a viable mechanism to
explain plasma heating in the magnetosphere of young stars. The wave and basic
plasma parameters are compatible with the requirement that the dissipation
length of GAWs be comparable to the distance between the shocked region at the
star's surface and the truncation region in the accretion disk. A two-fluid
magnetohydrodynamic plasma model is used in the analysis. A current carrying
filament along magnetic field lines acts as a waveguide for the GAW. The
current in the filament is driven by plasma waves along the magnetic field
lines and/or by plasma crossing magnetic field lines in the truncated region of
the disk of the accreting plasma. The conversion of a small fraction of the
kinetic energy into GAW energy is sufficient to heat the plasma filament to
observed temperatures.Comment: Submitted to ApJ, aheatf.tex, 2 figure
Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space
We examine the bound state and scattering problem of a spin-one-half particle
undergone to an Aharonov-Bohm potential in a conical space in the
nonrelativistic limit. The crucial problem of the \delta-function singularity
coming from the Zeeman spin interaction with the magnetic flux tube is solved
through the self-adjoint extension method. Using two different approaches
already known in the literature, both based on the self-adjoint extension
method, we obtain the self-adjoint extension parameter to the bound state and
scattering scenarios in terms of the physics of the problem. It is shown that
such a parameter is the same for both situations. The method is general and is
suitable for any quantum system with a singular Hamiltonian that has bound and
scattering states.Comment: Revtex4, 5 pages, published versio
Non universality of entanglement convertibility
Recently, it has been suggested that operational properties connected to
quantum computation can be alternative indicators of quantum phase transitions.
In this work we systematically study these operational properties in 1D systems
that present phase transitions of different orders. For this purpose, we
evaluate the local convertibility between bipartite ground states. Our results
suggest that the operational properties, related to non-analyticities of the
entanglement spectrum, are good detectors of explicit symmetries of the model,
but not necessarily of phase transitions. We also show that thermodynamically
equivalent phases, such as Luttinger liquids, may display different
convertibility properties depending on the underlying microscopic model.Comment: 5 pages + references, 4 figures - improved versio
Density-density propagator for one-dimensional interacting spinless fermions with non-linear dispersion and calculation of the Coulomb drag resistivity
Using bosonization-fermionization transformation we map the
Tomonaga-Luttinger model of spinless fermions with non-linear dispersion on the
model of fermionic quasiparticles whose interaction is irrelevant in the
renormalization group sense. Such mapping allows us to set up an expansion for
the density-density propagator of the original Tomonaga-Luttinger Hamiltonian
in orders of the (irrelevant) quasiparticle interaction. The lowest order term
in such an expansion is proportional to the propagator for free fermions. The
next term is also evaluated. The propagator found is used for calculation of
the Coulomb drug resistivity in a system of two capacitively coupled
one-dimensional conductors. It is shown that is proportional to for
both free and interacting fermions. The marginal repulsive in-chain interaction
acts to reduce as compared to the non-interacting result. The correction to
due to the quasiparticle interaction is found as well. It scales as
at low temperature.Comment: 5 pages, 1 eps figure; the new version of the e-print corrects an
error, which exists in the original submission; fortunately, all important
conclusions of the study remain vali
Energy shift and conduction-to-valence band transition mediated by a time dependent potential barrier in graphene
We investigate the scattering of a wave packet describing low-energy
electrons in graphene by a time-dependent finite step potential barrier. Our
results demonstrate that, after Klein tunneling through the barrier, the
electron acquires an extra energy which depends on the rate of change the
barrier height in time. If such a rate is negative, the electron loses energy
and ends up as a valence band state after leaving the barrier, which
effectively behaves as a positively charged quasi-particleComment: 5 pages, 5 figures, Fig. 3 selected for the Kaleidoscope section
(Sept. 2015) of Phys. Rev.
Effect of Electrolyte Balance in Low-Protein Diets on Broiler Performance and Tibial Dyschondroplasia Incidence
A proper dietary electrolyte balance (DEB) is essential to ensure an optimum acid-base equilibrium and broiler performance. In low-CP diets, this balance can be affected by reduction of soybean meal and inclusion of high levels of synthetic amino acids. Although, some studies have related low-protein diets supplemented with amino acids and DEB, these relations are not well explained, because some research demonstrates confusion about the deficiency and balance of nutrients. The objective of these experiments was to evaluate the DEB effects of diets with low levels of protein supplemented with amino acids on broiler performance and bone development. Results indicated that DEB and CP content influenced broiler chick performance in the starter and growing periods. There was no significant effect due to the interaction between DEB and CP content for tibial dyschondroplasia incidence (TD) or in bone breaking resistance during the growing period of either experiment. The incidence of TD was reduced with 253 mEq/kg DEB in the starter period
Effect of quality, porosity and density on the compression properties of cork
The compression properties of cork were studied on samples obtained from cork planks of two commercial quality classes (good and poor quality), with densities ranging from 0.12–0.20g cm-3 and porosities from 0.5 to 22.0%. The stress-strain curves were characterized by an elastic region up to approximately 5% strain, followed by a large plateau up to 60% strain caused by the progressive buckling of cell walls, and a steep stress increase for higher strains corresponding to cell collapse. The direction of compression was a highly significant factor of variation, with cork showing higher strength for the radial compression.
Density influenced compression and cork samples with higher density showed overall larger resistance to compression in the three directions. In the elastic region, an exponential model of Young’s modulus in function of cork density could be adjusted.
The effect of porosity on compression was small and the stress-strain curves were similar regardless of the porosity of the samples, although there was a trend toward an overall increase of stress with porosity for higher strains. Porosity was characterised by a high variability in the anatomical features of the lenticular filling material and the presence of collapsed and thick walled lignified cells. The inclusion of a porosity parameter for the modelling of the elastic modulus did not improve the prediction obtained with density-based models.
There was no significant difference in the compression properties of cork samples obtained from cork planks of good and poor quality classes.info:eu-repo/semantics/publishedVersio
Density functional investigations of defect induced mid-gap states in graphane
We have carried out ab initio electronic structure calculations on graphane
(hydrogenated graphene) with single and double vacancy defects. Our analysis of
the density of states reveal that such vacancies induce the mid gap states and
modify the band gap. The induced states are due to the unpaired electrons on
carbon atoms. Interestingly the placement and the number of such states is
found to be sensitive to the distance between the vacancies. Furthermore we
also found that in most of the cases the vacancies induce a local magnetic
moment.Comment: 15 page
- …
