818 research outputs found

    The Nlrc4 Inflammasome Contributes to Restriction of Pulmonary Infection by Flagellated Legionella spp. that Trigger Pyroptosis

    Get PDF
    The Nlrc4 inflammasome is triggered in response to contamination of the host cell cytoplasm with bacterial flagellin, which induces pyroptosis, a form of cell death that accounts for restriction of bacterial infections. Although induction of pyroptosis has been extensively investigated in response to Salmonella typhimurium and Legionella pneumophila, little is known regarding the role of the inflammasome for restriction of non-pneumophila Legionella species. Here, we used five species of the Legionella genus to investigate the importance of the inflammasome for restriction of bacterial infection in vivo. By infecting mice deficient for inflammasome components, we demonstrated that caspase-1 and Nlrc4, but not Asc, contribute to restriction of pulmonary infection with L. micdadei, L. bozemanii, L. gratiana, and L. rubrilucens. L. longbeachae, a non-flagellated bacterium that fails to trigger pyroptosis, was not restricted by the inflammasome and induced death in the infected mice. In contrast to L. longbeachae, flagellin mutants of L. pneumophila did not induce mice death; therefore, besides bypassing the Nlrc4 inflammasome, L. longbeachae may employ additional virulence strategies to replicate in mammalian hosts. Collectively, our data indicate that the Nlrc4 inflammasome plays an important role in host protection against opportunistic pathogenic bacteria that express flagellin

    Enzyme kinetics, structural analysis and molecular modeling studies on a series of Schistosoma mansoni PNP inhibitors

    Get PDF
    The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).A enzima purina nucleosídeo fosforilase do parasita Schistosoma mansoni (SmPNP) é um alvo molecular atrativo para o desenvolvimento de candidatos a novos fármacos para o tratamento da esquistossomose, doença tropical negligenciada que afeta mais de 200 milhões de pessoas em todo mundo. No presente trabalho, estudos de cinética enzimática foram conduzidos para a determinação da potência e do mecanismo de inibição de uma série de inibidores da enzima SmPNP. Além das investigações bioquímicas, estudos cristalográficos e de modelagem molecular revelaram importantes bases moleculares para a afinidade de ligação frente à enzima alvo, levando ao desenvolvimento de relações entre a estrutura e atividade (SAR).(FAPESP) São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado da Bahia (FAPESB)(CNPq) National Council for Scientific and Technological Developmen

    Exploring the Elastic Properties and Fracture Patterns of Me-Graphene Monolayers and Nanotubes through Reactive Molecular Dynamics Simulations

    Full text link
    Me-graphene (MeG) is a novel two-dimensional (2D) carbon allotrope. Due to its attractive electronic and structural properties, it is important to study the mechanical behavior of MeG in its monolayer and nanotube topologies. In this work, we conducted fully atomistic reactive molecular dynamics simulations using the Tersoff force field to investigate their mechanical properties and fracture patterns. Our results indicate that Young's modulus of MeG monolayers is about 414 GPa and in the range of 421-483 GPa for the nanotubes investigated here. MeG monolayers and MeGNTs directly undergo from elastic to complete fracture under critical strain without a plastic regime.Comment: 10 pages, 01 table, and 05 figure

    Sun-Graphyne: A New 2D Carbon Allotrope with Dirac Cones

    Full text link
    Due to the success achieved by graphene, several 2D carbon-based allotropes were theoretically predicted and experimentally synthesized. Here, we propose a new 2D carbon allotrope named Sun-Graphyne (S-GY). We used density functional theory and reactive molecular dynamics simulations to investigate its mechanical, structural, electronic, and optical properties. The results showed that S-GY exhibits good dynamical and thermal stabilities. Its formation energy and elastic moduli are -8.57 eV/atom and 262.37 GPa, respectively. S-GY is a semi-metal and presents two Dirac cones in its band structure. This material is transparent, and its intense optical activity is limited to the infrared region. Remarkably, the band structure of S-GY remains practically unchanged at even moderate strain regimes. As far as we know, this is the first 2D carbon allotrope to exhibit this behaviour.Comment: 17 pages, and 11 figure

    Double layer SiO2–TiO2 sol–gel thin films on glass for antireflection, antifogging, and UV recoverable self-cleaning

    Get PDF
    Double layer thin films, mechanically stable and adhering to glass, were produced through the sol–gel process, using tetraethyl orthosilicate and titanium butoxide as precursors. The refractive index of the titania and silica– titania composite layers were typically 2.1 and 1.7, and their physical thicknesses were approximately 65 nm and 81 nm, respectively, as determined by ellipsometry. These optical constants allowed attainment of quarterwave optical thicknesses at the center of the visible spectrum (550 nm) as designed, with an increase of 3.4% in transmittance. The nanometric surface roughness, measured by optical profilometry, was effective to decrease light scattering and water contact angles to below 10◦ . As novelty in dip-coated sol–gel films, superhydrophilicity for self-cleaning, antifogging, and antireflection in the mid-visible spectrum were simultaneously attained with durability of 9 weeks in the dark. Further application of UV light allowed regeneration of contact angles for self-cleaning

    Salivary IL-21 and IgA responses to a competitive match in elite basketball players

    Get PDF
    Athletes engaged in strenuous training might experience transient immune suppression that could lead to greater incidence of upper respiratory tract infections (URTI). Since interleukin 21 (IL-21) stimulates immunoglobulin A (IgA) secreting cells and a low level of this immunoglobulin is associated with increased incidence of URTI, the aim of the present study was to investigate the effect of a basketball match on salivary cortisol (sC), salivary IL-21 (sIL-21) and salivary IgA (sIgA) levels. Twenty male basketball players participated in an official game in two teams (10 players in each team). The saliva samples were collected before the warm-up and approximately 10-15 min after the end of the match and were analysed by ELISA methods. sC concentration increased significantly after the match while sIL-21 level was reduced (p < 0.05). In opposition to the study’s hypothesis, sIgA level did not change in response to the match. The present findings suggest that a basketball match is sufficiently stressful to elevate sC concentration and attenuates the sIL-21 output without compromising the sIgA level. It is reasonable to speculate that the stability of sIgA acute responses to the match, despite the decrement in sIL-21, indicates that other mechanisms rather than IL-21 stimulating B cell proliferation/differentiation might modulate IgA concentration and secretion rate.FAPESP 2008/10404-

    Specificity and selectivity improvement in doping analysis using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry

    Full text link
    Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection
    • …
    corecore