28,113 research outputs found

    Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    Get PDF
    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-SS chains with S=1/2S=1/2, 11 and 3/23/2.Comment: 20 pages, 12 figure

    Quadrature entanglement and photon-number correlations accompanied by phase-locking

    Full text link
    We investigate quantum properties of phase-locked light beams generated in a nondegenerate optical parametric oscillator (NOPO) with an intracavity waveplate. This investigation continuous our previous analysis presented in Phys.Rev.A 69, 05814 (2004), and involves problems of continuous-variable quadrature entanglement in the spectral domain, photon-number correlations as well as the signatures of phase-locking in the Wigner function. We study the role of phase-localizing processes on the quantum correlation effects. The peculiarities of phase-locked NOPO in the self-pulsing instability operational regime are also cleared up. The results are obtained in both the P-representation as a quantum-mechanical calculation in the framework of stochastic equations of motion, and also by using numerical simulation based on the method of quantum state diffusion.Comment: Subm. to PR

    Avaliação das condições de salinidade, drenagem e fertilidade e alterações químicas ocorridas em areia quartzozas apos cinco anos sob irrigação localizada.

    Get PDF
    Este trabalho foi conduzido em uma área de areia quartzoza da Fazenda Boa Esperança, em Petrolina-Pe, cultivada c om videira e mangueira. Avaliou-se o efeito d a irrigação e da adubação, aplicadas durante cinco anos, sobre algumas características químicas do solo e aparecimento de lençol freático. O sistema de irrigação utilizado foi micro-aspersão. Amostragem do solo foi feita em 34 pontos da área cultivada, onde estão localizados os poços, para observação do nível do lençol freático. Os resultados analíticos mostraram que houve um aumento da CE das bases trocáveis e do fósforo "disponível" e o aparecimento do lençol freático, na área da videira

    Reação de cultivares de batata-doceao mal-do-pé.

    Get PDF
    O objetivo deste trabalho foi avaliar a reação de cultivares de batata-doce a Plenodomus destruens. As cultivares utilizadas foram: Princesa, Braszlândia Branca, Brazlândia Roxa, Brazlândia Rosada, Beauregard e Coquinho

    Strangeness and heavy flavor at RHIC: Recent results from PHENIX

    Full text link
    We report recent results of strangeness and heavy flavor measurements from PHENIX. The topics are: Elliptic flow of strangeness and heavy flavor electron production comparing to the other hadrons, ϕ\phi meson production, and an exotic particle search.Comment: 8 pages, 6 figures, 1 table. Submitted to J. Phys. G (Proceedings of the 8th International Conference on Strangeness in Quark Matter, Cape Town, South Africa, September 15-20, 2004

    Quasi-Topological Quantum Field Theories and Z2Z_2 Lattice Gauge Theories

    Full text link
    We consider a two parameter family of Z2Z_2 gauge theories on a lattice discretization T(M)T(M) of a 3-manifold MM and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Γ\Gamma. We show that there is a region Γ0\Gamma_0 of Γ\Gamma where the partition function and the expectation value of the Wilson loop for a curve $\gamma$ can be exactly computed. Depending on the point of $\Gamma_0$, the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of $M$. The Wilson loop on the other hand, does not depend on the topology of $\gamma$. However, for a subset of $\Gamma_0$, depends on the size of γ\gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.Comment: 19 pages, 13 figure

    Using the Sound Card as a Timer

    Full text link
    Experiments in mechanics can often be timed by the sounds they produce. In such cases, digital audio recordings provide a simple way of measuring time intervals with an accuracy comparable to that of photogate timers. We illustrate this with an experiment in the physics of sports: to measure the speed of a hard-kicked soccer ball.Comment: 3 pages, 4 figures, Late
    corecore