7 research outputs found

    Mycorrhizas in South American Anthropic Environments

    Get PDF
    The agricultural expansion has leaded to increase the irrigated cropland area and the use of fertilizers, resulting in water degradation, increased energy use, and common pollution. Of particular concern is the increased interest to reduce the environmental impacts of high quantities of water dedicated to irrigation by agricultural activities We are now truly recognizing the importance of sustainable measures in agriculture such as conservation of the vegetation cover and management approach to understand surface and deep soil responses to global change. The agroecology management based on key processes from natural ecosystems can help to solve some agricultural difficulties. Increasing studies on the Arbuscular mycorrhizal fungi (AMF) has showed their importance for soil ecology and studies on their biodiversity have spread in some agro-ecosystems such as corn and soybean monocultures. Therefore, it is needed to deeply study the mycorrhizal functions under global change. In this chapter, we examine the major developments and advances on mycorrhizal fungi based on recent research from South American countries. New reports on the occurrence of mycorrhizas in Amazonian dark earth, as well as the inoculum production of arbuscular mycorrhizal fungi native of soils under native forest covers, have resulted in a more detailed understanding of the soil biology from South America. Reports from Amazonian dark earth or “Terra preta do índio” soil has stimulated the use of biochar worldwide as a soil conditioner that can add value to non-harvested agricultural products and promote plant growth. Few reports from Brazil showed that the addition of inorganic fertilizer, compost and chicken manure resulted in increases in plant cover and plant species richness. In this sense, the biochar/mycorrhizae interactions also can be prioritized for sequestration of carbon in soils to contribute to climate change mitigation

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore