7 research outputs found

    Implicit detection of poetic harmony by the naïve brain

    Get PDF
    The power of poetry is universally acknowledged, but it is debatable whether its appreciation is reserved for experts. Here we show that readers with no particular knowledge of a traditional form of Welsh poetry unconsciously distinguish phrases conforming to its complex poetic construction rules from those that violate them. We studied the brain response of native speakers of Welsh as they read meaningful sentences ending in a word that either complied with strict poetic construction rules, violated rules of consonantal repetition, violated stress pattern, or violated both these constraints. Upon reading the last word of each sentence, participants indicated sentence acceptability. As expected, our inexperienced participants did not explicitly distinguish between sentences that conformed to the poetic rules from those that violated them. However, in the case of orthodox sentences, the critical word elicited a distinctive brain response characteristic of target detection –the P3b– as compared to the other conditions, showing that speakers of Welsh with no expertise of this particular form of poetry implicitly detect poetic harmony. These results show for the first time that before we even consider literal meaning, the musical properties of poetry speak to the human mind in ways that escape consciousness

    From Dust to Nanodust: Resolving Circumstellar Dust from the Colliding-wind Binary Wolf-Rayet 140

    No full text
    Wolf-Rayet (WR) 140 is the archetypal periodic dust-forming colliding-wind binary that hosts a carbon-rich WR (WC) star and an O-star companion with an orbital period of 7.93 yr and an orbital eccentricity of 0.9. Throughout the past few decades, multiple dust-formation episodes from WR 140 have been observed that are linked to the binary orbit and occur near the time of periastron passage. Given its predictable dust-formation episodes, WR 140 presents an ideal astrophysical laboratory to investigate the formation and evolution of dust in the hostile environment around a massive binary system. In this paper, we present near- and mid-infrared (IR) spectroscopic and imaging observations of WR 140 with Subaru/SCExAO+CHARIS, Keck/NIRC2+PyWFS, and Subaru/Cooled Mid-Infrared Camera and Spectrograph taken between 2020 June and September that resolve the circumstellar dust emission linked to its most recent dust-formation episode in 2016 December. Our spectral energy distribution analysis of WR 140's resolved circumstellar dust emission reveals the presence of a hot ( T _d ∌ 1000 K) near-IR dust component that is co-spatial with the previously known and cooler ( T _d ∌ 500 K) mid-IR dust component composed of 300–500 Å sized dust grains. We attribute the hot near-IR dust emission to the presence of nano-sized (nanodust) grains and suggest they were formed from grain–grain collisions or the rotational disruption of the larger grain size population by radiative torques in the strong radiation field from the central binary. Lastly, we speculate on the astrophysical implications of nanodust formation around colliding-wind WC binaries, which may present an early source of carbonaceous nanodust in the interstellar medium

    Nested Dust Shells around the Wolf-Rayet Binary WR 140 observed with JWST

    No full text
    International audienceMassive colliding-wind binaries that host a Wolf-Rayet (WR) star present a potentially important source of dust and chemical enrichment in the interstellar medium (ISM). However, the chemical composition and survival of dust formed from such systems is not well understood. The carbon-rich WR (WC) binary WR~140 presents an ideal astrophysical laboratory for investigating these questions given its well-defined orbital period and predictable dust-formation episodes every 7.93 years around periastron passage. We present observations from our Early Release Science program (ERS1349) with the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) Medium-Resolution Spectrometer (MRS) and Imager that reveal the spectral and spatial signatures of nested circumstellar dust shells around WR~140. MIRI MRS spectroscopy of the second dust shell and Imager detections of over 17 shells formed throughout the past ≳130\gtrsim130 years confirm the survival of carbonaceous dust grains from WR~140 that are likely carriers of "unidentified infrared" (UIR)-band features at 6.4 and 7.7 ÎŒ\mum. The observations indicate that dust-forming WC binaries can enrich the ISM with organic compounds and carbonaceous dust
    corecore