14,173 research outputs found

    A natural orbital functional for the many-electron problem

    Get PDF
    The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. In the former approach the unknown part of the functional contains both a kinetic and a potential contribution whereas in the latter approach it contains only a potential energy and consequently has simpler scaling properties. We present an approximate, simple and parameter-free functional of the natural orbitals, based solely on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yields on average more accurate energies and charge densities than the Hartree Fock method, the local density approximation and the generalized gradient approximations

    Electrical response of molecular systems: the power of self-interaction corrected Kohn-Sham theory

    Full text link
    The accurate prediction of electronic response properties of extended molecular systems has been a challenge for conventional, explicit density functionals. We demonstrate that a self-interaction correction implemented rigorously within Kohn-Sham theory via the Optimized Effective Potential (OEP) yields polarizabilities close to the ones from highly accurate wavefunction-based calculations and exceeding the quality of exact-exchange-OEP. The orbital structure obtained with the OEP-SIC functional and approximations to it are discussed.Comment: accepted for publication in Physical Review Letter

    Stabilized jellium model and structural relaxation effects on the fragmentation energies of ionized silver clusters

    Full text link
    Using the stabilized jellium model in two schemes of `relaxed' and `rigid', we have calculated the dissociation energies and the fission barrier heights for the binary fragmentations of singly-ionized and doubly-ionized Ag clusters. In the calculations, we have assumed spherical geometries for the clusters. Comparison of the fragmentation energies in the two schemes show differences which are significant in some cases. This result reveals the advantages of the relaxed SJM over the rigid SJM in dynamical processes such as fragmentation. Comparing the relaxed SJM results and axperimental data on fragmentation energies, it is possible to predict the sizes of the clusters just before their fragmentations.Comment: 9 pages, 12 JPG figure

    Ab initio pseudopotential study of Fe, Co, and Ni employing the spin-polarized LAPW approach

    Full text link
    The ground-state properties of Fe, Co, and Ni are studied with the linear-augmented-plane-wave (LAPW) method and norm-conserving pseudopotentials. The calculated lattice constant, bulk modulus, and magnetic moment with both the local-spin-density approximation (LSDA) and the generalized gradient approximation (GGA) are in good agreement with those of all-electron calculations, respectively. The GGA results show a substantial improvement over the LSDA results, i.e., better agreement with experiment. The accurate treatment of the nonlinear core-valence exchange and correlation interaction is found to be essential for the determination of the magnetic properties of 3d transition metals. The present study demonstrates the successful application of the LAPW pseudopotential approach to the calculation of ground-state properties of magnetic 3d transition metals.Comment: RevTeX, 14 pages, 2 figures in uufiles for

    A local density functional for the short-range part of the electron-electron interaction

    Full text link
    Motivated by recent suggestions --to split the electron-electron interaction into a short-range part, to be treated within the density functional theory, and a long-range part, to be handled by other techniques-- we compute, with a diffusion Monte Carlo method, the ground-state energy of a uniform electron gas with a modified, short-range-only electron-electron interaction \erfc(\mu r)/r, for different values of the cutoff parameter ÎĽ\mu and of the electron density. After deriving some exact limits, we propose an analytic representation of the correlation energy which accurately fits our Monte Carlo data and also includes, by construction, these exact limits, thus providing a reliable ``short-range local-density functional''.Comment: 7 pages, 3 figure

    Dimensional crossover of the exchange-correlation energy at the semilocal level

    Full text link
    Commonly used semilocal density functional approximations for the exchange-correlation energy fail badly when the true two dimensional limit is approached. We show, using a quasi-two-dimensional uniform electron gas in the infinite barrier model, that the semilocal level can correctly recover the exchange-correlation energy of the two-dimensional uniform electron gas. We derive new exact constraints at the semilocal level for the dimensional crossover of the exchange-correlation energy and we propose a method to incorporate them in any exchange-correlation density functional approximation.Comment: 6 pages, 5 figure

    Structural models for the Si(553)-Au atomic chain reconstruction

    Full text link
    Recent photoemission experiments on the Si(553)-Au reconstruction show a one-dimensional band with a peculiar ~1/4 filling. This band could provide an opportunity for observing large spin-charge separation if electron-electron interactions could be increased. To this end, it is necessary to understand in detail the origin of this surface band. A first step is the determination of the structure of the reconstruction. We present here a study of several structural models using first-principles density functional calculations. Our models are based on a plausible analogy with the similar and better known Si(557)-Au surface, and compared against the sole structure proposed to date for the Si(553)-Au system [Crain JN et al., 2004 Phys. Rev. B 69 125401 ]. Results for the energetics and the band structures are given. Lines for the future investigation are also sketched

    Ab initio Studies of the Possible Magnetism in BN Sheet by Non-magnetic Impurities and Vacancies

    Full text link
    We performed first-principles calculations to investigate the possible magnetism induced by the different concentrations of non-magnetic impurities and vacancies in BN sheet. The atoms of Be, B, C, N, O, Al and Si are used to replace either B or N in the systems as impurities. We discussed the changes in density of states as well as the extent of the spatial distributions of the defect states, the possible formation of magnetic moments, the magnitude of the magnetization energies and finally the exchange energies due to the presence of these defects. It is shown that the magnetization energies tend to increase as the concentrations of the defects decreases in most of the defect systems which implies a definite preference of finite magnetic moments. The calculated exchange energies are in general tiny but not completely insignificant for two of the studied defect systems, i.e. one with O impurities for N and the other with B vacancies.Comment: 8 pages, 10 figures, submitted to Phys. Rev.

    Atomic self-interaction correction for molecules and solids

    Full text link
    We present an atomic orbital based approximate scheme for self-interaction correction (SIC) to the local density approximation of density functional theory. The method, based on the idea of Filippetti and Spaldin [Phys. Rev. B 67, 125109 (2003)], is implemented in a code using localized numerical atomic orbital basis sets and is now suitable for both molecules and extended solids. After deriving the fundamental equations as a non-variational approximation of the self-consistent SIC theory, we present results for a wide range of molecules and insulators. In particular, we investigate the effect of re-scaling the self-interaction correction and we establish a link with the existing atomic-like corrective scheme LDA+U. We find that when no re-scaling is applied, i.e. when we consider the entire atomic correction, the Kohn-Sham HOMO eigenvalue is a rather good approximation to the experimental ionization potential for molecules. Similarly the HOMO eigenvalues of negatively charged molecules reproduce closely the molecular affinities. In contrast a re-scaling of about 50% is necessary to reproduce insulator bandgaps in solids, which otherwise are largely overestimated. The method therefore represents a Kohn-Sham based single-particle theory and offers good prospects for applications where the actual position of the Kohn-Sham eigenvalues is important, such as quantum transport.Comment: 16 pages, 7 figure

    Exchange-energy functionals for finite two-dimensional systems

    Full text link
    Implicit and explicit density functionals for the exchange energy in finite two-dimensional systems are developed following the approach of Becke and Roussel [Phys. Rev. A 39, 3761 (1989)]. Excellent agreement for the exchange-hole potentials and exchange energies is found when compared with the exact-exchange reference data for the two-dimensional uniform electron gas and few-electron quantum dots, respectively. Thereby, this work significantly improves the availability of approximate density functionals for dealing with electrons in quasi-two-dimensional structures, which have various applications in semiconductor nanotechnology.Comment: 5 pages, 3 figure
    • …
    corecore