32 research outputs found

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd

    Identificación del índice de vulnerabilidad territorial a partir de modelos jerárquicos y heurísticos aplicando SOA

    Get PDF
    Auxiliar de InvestigaciónEn el proyecto se realiza el diseño y desarrollo de 4 servicios web implementando los modelos de toma de decisión (AHP, AHP FUZZY, ELECTRE y PROMETHEE), encargados de procesar datos obtenidos en campo en la primera fase del proyecto que se realizó a través de encuestas, formatos de entrevistas, talleres y metodologías de análisis. Los datos se procesaran de acuerdo al modelo de toma de decisión seleccionado, generando como resultado final un indicador de vulnerabilidad territorial.PregradoIngeniero de Sistema

    G.R.I.M. scheduling applications

    No full text
    Paper on G.R.I.M. scheduling applications

    Preventive maintenance models for complex systems

    No full text
    Preventive maintenance (PM) of repairable systems can be very beneficial in reducing repair and replacement costs, and in improving system availability, by reducing the need for corrective maintenance (CM). Strategies for scheduling PM are often based on intuition and experience, though considerable improvements in performance can be achieved by fitting mathematical models to observed data; see Handlarski (1980), Dagpunar and Jack (1993) and Percy and Kobbacy (2000) for example

    Leaf surface characteristics of Betula papyrifera exposed to elevated CO2 and O3

    No full text
    Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 × ambient), O3 (1.2 × ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO2 and O3 increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO2. Cuticular ridges and epicuticular wax crystallites were less evident under CO2 and CO2 + O3. The increase in amorphous deposits, particularly under CO2 + O3, was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO2 + O3. The combination of elevated CO2 and O3 resulted in different responses than expected under exposure to CO2 or O3 alone. © 2009 Elsevier Ltd. All rights reserved

    Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone

    No full text
    The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess the effects of three successive years of exposure to combinations of elevated CO2 and O3 on growth responses in a five trembling aspen (Populus tremuloides) clonal mixture in a regenerating stand. The experiment is located in Rhinelander, Wisconsin, USA (45°N 89°W) and employs free air carbon dioxide and ozone enrichment (FACE) technology. The aspen stand was exposed to a factorial combination of four treatments consisting of elevated CO2 (560 ppm), elevated O3 (episodic exposure-90 μ1 1-1 hour-1), a combination of elevated CO2 and O3, and ambient control in 30 m treatment rings with three replications. Our overall results showed that our three growth parameters including height, diameter and volume were increased by elevated CO2, decreased by elevated O3, and were not significantly different from the ambient control under elevated CO2 + O3. However, there were significant clonal differences in the responses; all five clones exhibited increased growth with elevated CO2, one clone showed an increase with elevated O3, and two clones showed an increase over the control with elevated CO2 + O3, two clones showed a decrease, and one was not significantly different from the control. Notably, there was a significant increase in current terminal shoot dieback with elevated CO2 during the 1999-2000 dormant season. Dieback was especially prominent in two of the five clones, and was attributed to those clones growing longer into the autumnal season where they were subject to frost. Our results show that elevated O3 negates expected positive growth effects of elevated CO2 in Populus tremuloides in the field, and suggest that future climate model predictions should take into account the offsetting effects of elevated O3 on CO2 enrichment when estimating future growth of trembling aspen stands. © 2001 Published by Elsevier Science Ltd. All rights reserved

    Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO2

    No full text
    Current projections indicate steady increases in both tropospheric ozone and carbon dioxide well into the next century with concurrent increases in plant stress. Because information about effects of these interacting stresses on forest trees is limited, we have conducted ozone and carbon dioxide experiments using ozone-tolerant and ozone-sensitive trembling aspen clones. Aspen plants were grown either in pots or in the ground in open-top chambers. Plants in the square-wave study were exposed for a single growing season to charcoal-filtered air or to CFplus elevated carbon dioxide, ozone,
    corecore