26 research outputs found
Quantifying the effects of prescribed burning on the health and productivity of tallgrass prairies
Percentage reflectance (810 nm) measurements, biomass sampling, and visual disease assessments were conducted at Cayler Prairie in 1999, Medora Prairie in 2000, and Doolittle and Sheeder Prairie in both 1999 and 2000, on burned and unburned sections of each tallgrass prairie. Quantitative measurements were obtained at approximately two-week intervals beginning in early May and continuing until September. There was a significant linear relationship (using regression) between percentage reflectance (810 mn) and green biomass (dry wt), suggesting that remote sensing can be used to nondestructively assess tallgrass prairie health and productivity. Area under the reflectance curve indicated that burning significantly improved prairie health and productivity (student's t-test, P<0.05). Seed samples from, Andropogon gerardii, Sorghastrum nutans, and Helianthus rigidus were harvested from the burned and unburned sections of Doolittle and Sheeder Prairies to determine the effects of prescribed burning on plant productivity.
Comparison of dry seed weights from burned and unburned treatments indicated that seed production was significantly greater in the burned section of the tallgrass prairies (P<0.05). Over a two-year period, disease incidence and severity were visually assessed and the relative frequencies of prairie pathogens were monitored over the course of each season. Thirty plants of each of three prairie plant species (A. gerardii, S. nutans, and H. rigidus) were visually assessed from burned and unburned sections of each tallgrass prairie at approximately two-week intervals beginning in late May and continuing until late August to mid-September. Comparisons of standardized area under the disease progress curve (AUDPC) were calculated from burned and unburned sections the logistic model to transformed disease assessment data over time. Disease intensity was significantly lower (P<0.05) in the burned sections of tallgrass prairies compared to the unburned sections. Prescribed burning significantly reduced (P<0.05) disease intensity by delaying the onset of epidemics on all three plant species assessed
Genes Duplicated by Polyploidy Show Unequal Contributions to the Transcriptome and Organ-Specific Reciprocal Silencing
Most eukaryotes have genomes that exhibit high levels of gene redundancy, much of which seems to have arisen from one or more cycles of genome doubling. Polyploidy has been particularly prominent during flowering plant evolution, yielding duplicated genes (homoeologs) whose expression may be retained or lost either as an immediate consequence of polyploidization or on an evolutionary timescale. Expression of 40 homoeologous gene pairs was assayed by cDNA-single-stranded conformation polymorphism in natural (1- to 2-million-yr-old) and synthetic tetraploid cotton (Gossypium) to determine whether homoeologous gene pairs are expressed at equal levels after polyploid formation. Silencing or unequal expression of one homoeolog was documented for 10 of 40 genes examined in ovules of Gossypium hirsutum. Assays of homoeolog expression in 10 organs revealed variable expression levels and silencing, depending on the gene and organ examined. Remarkably, silencing and biased expression of some gene pairs are reciprocal and developmentally regulated, with one homoeolog showing silencing in some organs and the other being silenced in other organs, suggesting rapid subfunctionalization. Duplicate gene expression was examined in additional natural polyploids to characterize the pace at which expression alteration evolves. Analysis of a synthetic tetraploid revealed homoeolog expression and silencing patterns that sometimes mirrored those of the natural tetraploid. Both long-term and immediate responses to polyploidization were implicated. Data suggest that some silencing events are epigenetically induced during the allopolyploidization process
Genetic Diversity in Hypericum and AFLP Markers for Species-Specific Identification of H. perforatum L.
One of the top-selling medicinal products worldwide is Hypericum perforatum (St. John\u27s Wort). Despite its cosmopolitan distribution and utilization, little is known regarding the relationship of the bioactive compounds in H. perforatum to the plants from which they are purportedly derived. In this study, amplified fragment length polymorphism (AFLP) analysis of 56 Hypericum accessions, representing 11 species, was conducted to gain a better understanding of diversity within Hypericum species, especially within cultivated accessions of H. perforatum, and to establish a molecular methodology that will provide breeders and regulators with a simple, affordable, and accurate tool with which to identify purported H. perforatummaterial. Utilizing four primer combinations, a total of 298 polymorphic markers were generated, of which 17 were present in all H. perforatum accessions and 2 were specific to only H. perforatum. This study demonstrates that AFLP can be utilized not only to determine the relationships of closely related Hypericumaccessions, but as a tool to authenticate material in herbal remedies through the use of genetic fingerprinting
The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean
Background
Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean (Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis. Results
Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42–1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042. Overexpressing and silencing GmNAC42–1 in elicited soybean hairy roots dramatically enhanced and suppressed the amounts of glyceollin metabolites and biosynthesis gene mRNAs, respectively. Yet, overexpressing GmNAC42–1 in non-elicited hairy roots failed to stimulate the expressions of all biosynthesis genes. Thus, GmNAC42–1 was necessary but not sufficient to activate all biosynthesis genes on its own, suggesting an important role in the glyceollin gene regulatory network (GRN). The GmNAC42–1 protein directly bound the promoters of biosynthesis genes IFS2 and G4DT in the yeast one-hybrid (Y1H) system. Conclusions
Acidity stress is a novel elicitor and dehydration is a suppressor of glyceollin biosynthesis. The TF gene GmNAC42–1 is an essential positive regulator of glyceollin biosynthesis. Overexpressing GmNAC42–1 in hairy roots can be used to increase glyceollin yields \u3e 10-fold upon elicitation. Thus, manipulating the expressions of glyceollin TFs is an effective strategy for enhancing the bioproduction of glyceollins in soybean
Switchgrass (\u3ci\u3ePanicum virgatum\u3c/i\u3e L.) polyubiquitin gene (\u3ci\u3ePvUbi1\u3c/i\u3e and \u3ci\u3ePvUbi2\u3c/i\u3e) promoters for use in plant transformation
Abstract Background
The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were produced containing the isolated 5\u27 upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2 promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of plant species and tissues. Results
PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5\u27 untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3\u27 UTR. PvUbi2 consists of 692 bp containing cis-acting regulatory elements, a 5\u27 UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3\u27 UTR. PvUbi1 and PvUbi2 were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed expression in vascular and reproductive tissues. Conclusions
The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots
Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation
<p>Abstract</p> <p>Background</p> <p>The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (<it>Panicum virgatum </it>L.) ubiquitin genes (<it>PvUbi1 </it>and <it>PvUbi2</it>) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters) fused to the <it>uidA </it>coding region (<it>GUS</it>) and tested for transient and stable expression in a variety of plant species and tissues.</p> <p>Results</p> <p><it>PvUbi1 </it>consists of 607 bp containing <it>cis</it>-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. <it>PvUbi2 </it>consists of 692 bp containing <it>cis</it>-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. <it>PvUbi1 </it>and <it>PvUbi2 </it>were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV <it>35S, 2x35S, ZmUbi1</it>, and <it>OsAct1 </it>promoters. GUS staining following stable transformation in rice demonstrated that the <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drove expression in all examined tissues. When stably transformed into tobacco (<it>Nicotiana tabacum</it>), the <it>PvUbi2+3 </it>and <it>PvUbi2+9 </it>promoter fusion variants showed expression in vascular and reproductive tissues.</p> <p>Conclusions</p> <p>The <it>PvUbi1 </it>and <it>PvUbi2 </it>promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.</p
Organ-Specific Silencing of Duplicated Genes in a Newly Synthesized Cotton Allotetraploid
Most eukaryotes have undergone genome doubling at least once during their evolutionary history. Hybridization followed by genome doubling (allopolyploidization) is a prominent mode of speciation in plants, leading to phenotypic novelty and changes in genome structure and gene expression. Molecular events that take place immediately after polyploid formation can be studied using newly synthesized allopolyploids. Here we studied the extent of gene silencing in a newly created and genomically stable allotetraploid cotton, of genotype AAGG, using an AFLP-cDNA display screen. Over 2000 transcripts were screened and ∼5% of the duplicated genes in the allotetraploid were inferred to have been silenced or downregulated. Sequencing of 24 AFLP-cDNA fragments revealed genes with a variety of functions. Analysis by RT-PCR showed silencing or a strong expression bias toward one copy for 9 of 13 genes examined. Comparisons of expression patterns among eight organs in the allopolyploid showed that silencing and preferential expression are organ specific. Examination of silencing patterns in two other synthetic polyploids, of genotype AADD, showed that the same gene can be silenced independently in different genotypes. These results provide a detailed portrayal of gene silencing events that can occur following allopolyploidization and suggest epigenetic causal factors
Genes Duplicated by Polyploidy Show Unequal Contributions to the Transcriptome and Organ-Specific Reciprocal Silencing
Most eukaryotes have genomes that exhibit high levels of gene redundancy, much of which seems to have arisen from one or more cycles of genome doubling. Polyploidy has been particularly prominent during flowering plant evolution, yielding duplicated genes (homoeologs) whose expression may be retained or lost either as an immediate consequence of polyploidization or on an evolutionary timescale. Expression of 40 homoeologous gene pairs was assayed by cDNA-single-stranded conformation polymorphism in natural (1- to 2-million-yr-old) and synthetic tetraploid cotton (Gossypium) to determine whether homoeologous gene pairs are expressed at equal levels after polyploid formation. Silencing or unequal expression of one homoeolog was documented for 10 of 40 genes examined in ovules of Gossypium hirsutum. Assays of homoeolog expression in 10 organs revealed variable expression levels and silencing, depending on the gene and organ examined. Remarkably, silencing and biased expression of some gene pairs are reciprocal and developmentally regulated, with one homoeolog showing silencing in some organs and the other being silenced in other organs, suggesting rapid subfunctionalization. Duplicate gene expression was examined in additional natural polyploids to characterize the pace at which expression alteration evolves. Analysis of a synthetic tetraploid revealed homoeolog expression and silencing patterns that sometimes mirrored those of the natural tetraploid. Both long-term and immediate responses to polyploidization were implicated. Data suggest that some silencing events are epigenetically induced during the allopolyploidization process.This article is from Proceedings of the National Academy of Sciences of the United States of America 100 (2003): 4649, doi:10.1073/pnas.0630618100.</p
Genetic Diversity in Hypericum and AFLP Markers for Species-Specific Identification of H. perforatum L.
One of the top-selling medicinal products worldwide is Hypericum perforatum (St. John's Wort). Despite its cosmopolitan distribution and utilization, little is known regarding the relationship of the bioactive compounds in H. perforatum to the plants from which they are purportedly derived. In this study, amplified fragment length polymorphism (AFLP) analysis of 56 Hypericum accessions, representing 11 species, was conducted to gain a better understanding of diversity within Hypericum species, especially within cultivated accessions of H. perforatum, and to establish a molecular methodology that will provide breeders and regulators with a simple, affordable, and accurate tool with which to identify purported H. perforatummaterial. Utilizing four primer combinations, a total of 298 polymorphic markers were generated, of which 17 were present in all H. perforatum accessions and 2 were specific to only H. perforatum. This study demonstrates that AFLP can be utilized not only to determine the relationships of closely related Hypericumaccessions, but as a tool to authenticate material in herbal remedies through the use of genetic fingerprinting.This article is from Planta Medica 73 (2007): 1614, doi:10.1055/s-2007-993749.</p