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RESEARCH ARTICLE Open Access

Switchgrass (Panicum virgatum L.) polyubiquitin
gene (PvUbi1 and PvUbi2) promoters for use in
plant transformation
David GJ Mann1,4*, Zachary R King2,4, Wusheng Liu1, Blake L Joyce1, Ryan J Percifield3,4, Jennifer S Hawkins3,4,
Peter R LaFayette2,4, Barbara J Artelt2,4, Jason N Burris1,4, Mitra Mazarei1,4, Jeffrey L Bennetzen3,4, Wayne A Parrott2,4

and Charles N Stewart Jr1,4

Abstract

Background: The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good
candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum
virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were
produced containing the isolated 5’ upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2
promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of
plant species and tissues.

Results: PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5’ untranslated region (UTR)
containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes
four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3’ UTR. PvUbi2 consists of 692 bp
containing cis-acting regulatory elements, a 5’ UTR containing a 97 bp non-coding exon and a 1072 bp intron, a
1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3’ UTR. PvUbi1 and PvUbi2 were
expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and
PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression
levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice
demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably
transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed
expression in vascular and reproductive tissues.

Conclusions: The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong
constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.

Background
Genetic transformation is an important tool for crop
improvement and research in genetics. The transformation
of bioenergy crops with genes that alter plant development
rate, growth habit, cell wall structure and/or composition
has been deemed a promising approach to reduce cell wall
recalcitrance (i.e., resistance to enzymatic degradation dur-
ing saccharification) or to increase biomass yields [1-4].
Switchgrass (Panicum virgatum L.), a C4 perennial grass

species native to the prairies of North America, is a candi-
date lignocellulosic feedstock for bioenergy [5-7]. The
development of tissue culture and transformation systems
has led to significant breakthroughs and applications in
switchgrass biotechnology [8-11]. Recent increases in
transformation efficiency [12], along with recent demon-
strations of transgenic modifications [13-15], suggest that
genetic improvements of switchgrass through transgene
expression and down-regulation of native genes will be
accomplished with increasing regularity in the coming
years.
Transformation of switchgrass and other monocots is

facilitated by reliable molecular tools, including improved
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promoters for transgene expression. A variety of promo-
ters used in monocot plant species have been reported in
the literature, such as the rice (Oryza sativa) actin 1
(OsAct1) and actin 2 (OsAct2) promoters [16,17], the
maize ubiquitin 1 (ZmUbi1) promoter [18], and multiple
rice ubiquitin (RUBQ1, RUBQ2, rubi3) promoters
[19,20]. However, relatively few promoters have been
used in the production of transgenic switchgrass.
Richards et al. [9] demonstrated that the OsAct1and
ZmUbi1 promoters are able to drive transgene expression
in switchgrass, and these promoters have been used in
subsequent switchgrass transformation studies [11,21,22].
While the cauliflower mosaic virus (CaMV) 35S promo-
ter has been used in switchgrass, it typically resulted in
lower levels of expression [21,23,24]. Somleva et al. [10]
used the rice ubiquitin 2 (rubi2) promoter with limited
success, whereas the cab-m5 light-inducible promoter
from the chlorophyll a/b-binding protein in maize fused
to the heat shock protein 70 (hsp70) intron resulted in
significantly higher levels of transgene expression. How-
ever, cab-m5 expression is only expressed in a limited
number of plant tissues and cell types [10,25,26]. Most
recently, the rubi3 promoter was used to drive sGFP
expression in switchgrass callus, stem, axillary bud and
anther tissues [12,27]. Discovery and characterization of
new promoters with enhanced levels of constitutive
expression are needed [28], and would be highly benefi-
cial to improve bioenergy feedstock crops through
genetic transformation. While tissue-specific and induci-
ble promoters are desirable for certain applications
[29,30], constitutively expressed promoters are still the
most commonly used promoters in transgenic plants and
are advantageous for their wide range and stable levels of
transgene expression.
Ubiquitin is a protein that consists of tandem repeats

of a 76 amino acid monomer and is among the most
conserved proteins in eukaryotes; only three amino acid
polymorphisms exist among sequences from higher plant
and animal species [31]. Ubiquitin is present in all eukar-
yotic cells. Therefore, the promoters from polyubiquitin
genes are good candidates to regulate the constitutive
expression of transgenes. Polyubiquitin gene promoters
have been isolated from a variety of plants and tested for
their ability to drive transgene expression, including from
Arabidopsis thaliana [32], sunflower (Helianthus annuus)
[33], parsley (Petroselinum crispum) [34], tobacco (Nicoti-
ana tabacum) [35], potato (Solanum tuberosum) [36,37],
tomato (Solanum lycopersicum) [38,39], sugarcane (Sac-
charum oficinarum) [40], Gladiolus sp. [41], soybean (Gly-
cine max) [42] and Lotus japonicus [43] as well as the rice
and maize polyubiquitin genes mentioned above. In con-
trast with the highly conserved nature of the protein-
encoding portions of polyubiquitin genes, their promoters
and introns have extensive sequence variability between

paralogs and across organisms. However, all the polyubi-
quitin genes isolated from monocot and dicot plant
species share similar structures, including a 5’ UTR intron
that significantly contributes to the strong expression
capabilities of the polyubiquitin promoters [19,44-46].
In this study, we identified two novel polyubiquitin gene

sequences (PvUbi1 and PvUbi2) from a switchgrass geno-
mic library and characterized the native expression pat-
terns of these genes. Additionally, reporter constructs
were assembled containing the isolated 5’ upstream regu-
latory regions of the coding sequences (i.e. PvUbi1 and
PvUbi2 promoters) of these genes fused to the uidA cod-
ing region (GUS). These constructs were tested for transi-
ent and stable expression in a variety of plant species and
tissues. Our results demonstrate the potential use of the
PvUbi1 and PvUbi2 promoters in driving transgene
expression in switchgrass, rice and tobacco. To the best of
our knowledge, this is the first report characterizing native
switchgrass promoter sequences for transgene expression.

Results
Sequence analysis of PvUbi1 and PvUbi2
Two polyubiquitin genes were cloned from a switchgrass
fosmid library constructed by J. Hawkins and R. Percifield
(unpublished results). These two genes were designated
as ubiquitin 1 (PvUbi1) and 2 (PvUbi2) and are closely
linked to each other within the genome (Figure 1).
PvUbi1 consists of 607 bp containing cis-acting regula-
tory elements, a 5’ untranslated region (UTR) containing
a 93 bp non-coding exon and a 1291 bp intron, a 918 bp
open reading frame (ORF) and a 191 bp 3’ UTR. PvUbi2
consists of 692 bp containing cis-acting regulatory ele-
ments, a 97 bp 5’ UTR, a 1072 bp intron, a 1146 bp ORF
and a 183 bp 3’ UTR. For PvUbi1, the 918 bp ORF
encodes four tandem, head-to-tail repeats of 228 bp,
commonly referred to as ubiquitin monomer repeats,
with minimal sequence variation from one repeat to
another. Similar results were found from sequence analy-
sis of PvUbi2. However, instead of four repeats, the ORF
contained five tandem head-to-tail repeats resulting in a
coding region of 1146 bp. The ubiquitin monomers of
PvUbi1 and PvUbi2 contained identical amino acid
sequences compared to each other and several other
plant species, including maize [18], Arabidopsis [47] and
rice [19,20]. To test for promoter activity, the promoter
candidate region of PvUbi1 that spans 607 bp of the 5’
region upstream from the transcriptional initiation site,
along with the 93 bp 5’ UTR non-coding exon and the
1291 bp 5’ UTR intron was cloned, resulting in a frag-
ment of a total of 1991 bp. For PvUbi2, the isolated can-
didate promoter region was 1861 bp, including 692 bp
upstream of the transcriptional initiation site, the 5’ UTR
exon (97 bp) and the 1072 bp 5’ UTR intron (Additional
file 1 Figure S1).
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By analysis of the genomic DNA in the selected promo-
ter region, introns were identified immediately upstream
of the ATG start codon in the PvUbi1 and PvUbi2 genes.
These introns were identified based on the consensus
sequences CAAG/gtac at the 5’ splice site and cag/ATG at
the 3’ splice site (Additional file 1 Figure S2), which are
identical for characterized polyubiquitin genes from plants
[18-20,33-36,40,45]. To validate these intron splice sites
and identify the transcriptional initiation site, switchgrass
mRNA was subjected to RACE-PCR with primers specific
for PvUbi1 or PvUbi2. For PvUbi1, results revealed a tran-
scriptional initiation site at an adenine located 1384 bases
upstream from the ATG translational initiation codon of
the polyubiquitin gene. Subsequently, the transcriptional
initiation site for PvUbi2 was identified at an adenine 1169
bp upstream from the translational initiation codon of the
polyubiquitin gene. Using cDNA clones from the RACE-
PCR, along with expressed sequence tags (ESTs) from
GenBank and Tobias et al. [48], the intron splice sites
were confirmed, revealing 1291 and 1072 bp introns pre-
sent in PvUbi1 and PvUbi2, respectively. The PvUbi1 and
PvUbi2 introns exhibited limited homology (53%), similar
to the level of identity that has been reported when com-
paring different rice ubiquitin introns [20].
The PlantCARE Database [49] was queried for putative

cis-element sequences within the candidate promoter
regions of PvUbi1 and PvUbi2. Several motifs of putative
functionality were identified for PvUbi1 and PvUbi2
(underlined in Additional file 1, Figure S2). For PvUbi1,
these consisted of motifs involved in anaerobic induction
(TGGTTT, positions -577 to -572), light-responsiveness
(ATTAATTTTACA, positions -350 to -339; CACGTC,
positions -589 to -584; CC(G/A)CCC, positions -221 to
216; -170 to -165; and -54 to -49), response to methyl
jasmonate (MeJA) (CGTCA, positions -392 to -388; -77
to -73), low-temperature responsiveness (CCGAAA,
positions -112 to -107), endosperm expression (GTCAT,

positions -391 to -387), a MYB transcription factor bind-
ing site involved in drought-inducibility (TAACTG, posi-
tions -312 to -307), three CAAT boxes (positions -553 to
-550; -538 to -535; and -458 to -455) and a TATA box
(TATATAAA, positions -33 to -26). For PvUbi2, the
identified motifs for putative cis-acting regulatory ele-
ments were those involved in meristem expression
(GCCACT) and meristem specific activation (CCGTCC),
anoxic-specific inducibility (CCCCCG), low-temperature
responsiveness (CCGAAA), endosperm expression
(GTCAT), light responsiveness (CC(G/A)CCC), two
CAAT boxes and a TATA box (TAAATA, positions -32
to -27). However, it is important to indicate that these
elements were determined from in silico data and remain
to be functionally validated.

Tissue expression profiles of PvUbi1 and PvUbi2
A survey of switchgrass ESTs from the GenBank and
Tobias et al. [48] databases revealed expression of
PvUbi1 and PvUbi2 in all examined tissue types and
growth stages: leaf, root, apex and stem, crown, callus,
early floral buds and reproductive tissue, late flowering
buds and seed development, and etiolated seedlings. To
confirm these in silico data, specific primers were
designed for PvUbi1 and PvUbi2 to perform quantitative
reverse transcriptase-PCR (qRT-PCR) in different
switchgrass tissues (Figure 2). The qRT-PCR results
confirm that both PvUbi1 and PvUbi2 are expressed in
all tissues tested (leaf, flower, stem, root and callus).
PvUbi2 showed higher levels of expression in all tissues
except stem when compared to PvUbi1.

Transient and stable GUS expression regulated by the
PvUbi1 and PvUbi2 promoters
The capabilities of the PvUbi1 and PvUbi2 promoter can-
didate regions to drive transgene expression were evalu-
ated through the construction of expression vectors

Figure 1 Map of the PvUbi1 and PvUbi2 genes within the contiguous 10.4 kb sequence of switchgrass DNA in Pv9G7B5. The light gray
boxes represent the 228 bp ubiquitin monomer repeats of the translated exon. The black boxes represent the non-coding exons downstream of
each TATA box for PvUbi1 and PvUbi2. The intron splices sites (CAAG/gta and cag/ATG) are shown.
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(Additional file 1, Figure S2). All promoter variants were
cloned upstream of the uidA coding region (GUS) to cre-
ate promoter-GUS fusions. Vector constructs were trans-
formed into switchgrass callus by particle bombardment,
and transient expression was observed by GUS histo-
chemical staining. All constructs showed GUS expres-
sion, verifying that the PvUbi1 and PvUbi2 promoters
can be used successfully to drive transgene expression. In
order to compare expression levels of the PvUbi1 and
PvUbi2 promoters with those of other promoters, several
plant promoters commonly used in monocot transforma-
tion were selected and cloned into the same identical
vector (pHLucGWgus) to eliminate any discrepancies in
expression levels as a result of vector backbone or vector
size (Additional file 1, Figure S2).
In switchgrass and rice, the PvUbi1 and PvUbi2 promo-

ters resulted in higher levels of GUS compared to the
CaMV 35S and 2x35S promoters (Figure 3). In switch-
grass, the PvUbi1 and PvUbi2 promoters drove signifi-
cantly higher GUS expression when compared side-by-
side with all other plant promoters (ZmUbi1, OsAct1,
2x35S, CaMV 35S), with the PvUbi2 promoter reaching
2.1-fold higher levels than CaMV 35S (Figure 3a). In rice,
the PvUbi1 and PvUbi2 promoters resulted in 5.1- and
6.6-fold higher levels of expression when compared to
CaMV 35S, respectively (Figure 3b). No enhancement of
GUS activity was observed when three and nine amino
acids of the PvUbi1 and PvUbi2 ubiquitin coding regions
were fused to their respective promoters (Figure 3c and
3d). When comparing promoter expression levels
between switchgrass and rice, the relative difference in
absolute gene expression was 2.6- to 4.4-fold higher for
rice. To further validate these transient assays, rice callus

was bombarded with promoter- pHLucGWgus con-
structs and selected for stable transformation. When
transgenic plants were grown to maturity, the PvUbi1
and PvUbi2 promoters produced GUS in leaves, stems
and roots of mature rice plants, while no GUS was
detected in the untransformed control (Figure 4).
The PvUbi1 and PvUbi2 promoter constructs were

stably transformed into tobacco (cv. Xanthi) to evaluate
expression levels of these promoters in a dicot expres-
sion system. Additional promoter variants containing
three or nine amino acid fusions downstream of the
PvUbi1 and PvUbi2 intron sequences were tested for
the potential of increased transgene expression. Stably
transformed T0 plants were randomly selected and
grown to obtain seed for generation of T1 progeny. GUS
from the PvUbi1, PvUbi1+3 and PvUbi1+9 promoter
constructs could not be visually observed in T1 seedlings
at 10 and 17 days after germination, so these promoter
variants were not studied in subsequent experiments
(data not shown). While the PvUbi2 promoter drove
GUS expression in leaves, stems and roots at 10 and 17
days, the levels of expression were minimal when com-
pared to 2x35S (Figure 5). However, the GUS expression
dramatically increased with the PvUbi2 promoters con-
taining an additional three and nine amino acid fusions
from the ubiquitin coding region (PvUbi2+3 and PvUbi2
+9), exhibiting visibly detectable levels of GUS activity
in the vascular tissue of leaves, stems, and roots. There
was no visible enhancement of GUS from the PvUbi2
promoter constructs in tobacco following heat shock
induction treatment for 60 minutes at 42°C. However,
heat shock induction was not experimentally tested
within the native PvUbi1 or PvUbi2 genes in
switchgrass.
Since the PvUbi2 promoters showed expression in

seedlings, plants containing these promoter constructs
were grown to maturity for further analysis. As shown
in Figure 6, adult T1 plants showed staining of GUS in
the pollen, pistil and leaves for the PvUbi2 promoter
variants (PvUbi2, PvUbi2+3, PvUbi2+9). Similar to the
data from young seedlings, the PvUbi2+3 and PvUbi2+9
promoters containing fusions showed the highest levels
of expression. Expression of GUS in mature leaves
under the control of PvUbi2 promoter variants appeared
to be specific to the vascular tissue. GUS expression dri-
ven by the PvUbi2+3 and PvUbi2+9 promoters in
mature T1 plants was observed to be lower than those
in seedlings. GUS staining was consistently higher for
the 2x35S promoter in both tobacco seedlings and
mature adult T1 plants.

Discussion
This study demonstrates the isolation and characteriza-
tion of two switchgrass polyubiquitin genes, PvUbi1 and

Figure 2 Expression analysis of switchgrass PvUbi1 (black) and
PvUbi2 (gray) in a variety of switchgrass tissues using qRT-PCR.
Relative quantification was performed using the standard curve
method, and transcript accumulation of each gene was normalized
to the quantity of an expressed switchgrass actin (PvAct) gene. Each
bar represents the mean of three independent replicates with the
standard errors of the noted mean.
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PvUbi2. The identical amino acid sequences of the ubi-
quitin monomer repeats in PvUbi1 and PvUbi2 further
reveal the highly conserved nature of the polyubiquitin
gene family across both monocot and dicot genes
[19,20,32,35,37,40]. Both PvUbi1 and PvUbi2 displayed

high levels of native expression in all tissue types ana-
lyzed, consistent with the broad function of ubiquitin in
cell-cycle regulation [50], DNA-repair [51] and other
processes required of all cell types [31]. Additional
sequence data (unpublished) suggest that more than one

Figure 3 Comparison of the relative levels of GUS under the control of different promoters in switchgrass (A, C) and rice (B, D) callus
cultures. Each promoter construct contained the same pHLucGWgus DNA backbone and the relative expression levels of GUS under the control
of CaMV 35S were set to 1 for both switchgrass and rice. All other promoter values are shown relative to this CaMV 35S control. Bars represent
the mean value of six independent replicates. Treatments that share the same letter are not significantly different as calculated by LSD (P ≤ 0.05).
Error bars represent standard error.
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copy of polyubiquitin genes could exist in switchgrass
containing 5’ and 3’ UTR regions identical to that of
PvUbi1. These data are not unique to this study, as
similar observations have been made in sugarcane,
where 5’ and 3’ UTR sequences were identical for two
individually isolated clones, while the number of ubiqui-
tin monomer coding repeats varied [40]. Whether these
findings are the results of different polyubiquitin genes
present in the switchgrass genome or of post-transcrip-
tional splicing and modification remains to be deter-
mined. In either case, the presence of multiple genes is
consistent with the polyploidy nature of these species.
Intron-mediated enhancement of gene expression has

been shown in a number of plant species [44,52], and
multiple ubiquitin promoters have shown enhanced
transgene expression when the intron is included in the
promoter region [19,44-46,53,54]. Therefore, the intron
regions (1291 bp for PvUbi1 and 1072 bp for PvUbi2)
were retained with their respective 5’ upstream promo-
ter candidate regions during vector construction. How-
ever, the regulatory elements of some monocot
promoters retain high expression despite large deletions
in the internal portions of the intron sequence, as long
as efficient intron splicing is retained [16]. Therefore,
future deletion analysis for the PvUbi1 and PvUbi2 pro-
moter candidate regions could yield beneficial results,

Figure 4 Histochemical staining of GUS in rice leaves (L), stems
(S) and roots (R) driven by different promoters. The negative
control is untransformed rice.

Figure 5 Histochemical staining of GUS in tobacco seedlings driven by the 2x35S (A, E, I), PvUbi2 (B, F, J), PvUbi2+3 (C, G, K) and
PvUbi2+9 (D, H, L) promoters. Staining was performed at 10 days (A, B, C, D) and 17 days (E, F, G, H) post-germination. Heat shock was also
performed at 17 days post-germination (I, J, K, L). Each measurement bar represents 5 mm.
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since the removal of internal ubiquitin intron sequences
may have no detrimental effect [35].
The fusion of ubiquitin monomers to the N terminus

of expressed proteins has been observed to lead to site-

specific and highly efficient cleavage, resulting in free
ubiquitin and free protein of interest in the cell [55].
These fusions are not only efficiently processed and
cleaved by ubiquitin-specific proteases, but can also

Figure 6 Histochemical staining of GUS in the leaves (A, D, G, J), pollen (B, E, H, K) and pistils (C, F, I, L) of mature tobacco plants
driven by the 2x35S (A, B, C), PvUbi2 (D, E, F), PvUbi2+3 (G, H, I) and PvUbi2+9 (J, K, L) promoters. Each measurement bar represents 1
cm (leaf), 0.2 mm (pollen) and 1 mm (pistil).
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result in enhanced gene expression and protein accumu-
lation [19,56]. Ubiquitin fusions have been applied for
higher production of therapeutic recombinant proteins
[57]. Additionally, plant vectors have been developed
that employ ubiquitin fusions for the coexpression and
cleaving of two proteins from a single transcript [58].
This approach has also been used for the enhancement
of ubiquitin promoters in regulating transgene expres-
sion by the addition of an entire ubiquitin monomer or
select amino acids from the N terminus of the polyubi-
quitin coding region downstream of the promoter
region [19,36,37,46]. In this study, comparative expres-
sion levels of the PvUbi1 and PvUbi2 promoter candi-
date regions and their three (PvUbi1+3 and PvUbi2+3)
or nine (PvUbi1+9 and PvUbi2+9) amino acid ubiquitin
fusion promoter variants revealed minimal changes in
levels of GUS expression for switchgrass and rice. How-
ever, the three and nine amino acid fusions of the poly-
ubiquitin coding region to the PvUbi2 promoter and
intron drastically increased GUS staining in the vascular
tissue of tobacco. While an additive effect has been
observed when the first three or nine amino acids of the
polyubiquitin coding region are fused to the N-terminus
of a transgene and coupled with a ubiquitin promoter
[19], these enhancing effects were later attributed to the
removal of a GUS 5’ untranslated leader sequence [59].
Therefore, the enhancing effect of these fusions in
tobacco is striking, since the majority of ubiquitin fusion
enhancements have been demonstrated fusing an entire
ubiquitin monomer to the transgene [36,37,46,56,60].
Fusion of the entire ubiquitin monomer was not tested
in this study, but the high levels of expression in switch-
grass and rice using the PvUbi1 and PvUbi2 promoters
and introns without the ubiquitin monomer fusions
demonstrates that these promoter and intron regions
alone are highly useful for plant biotechnology applica-
tions in monocots. Likewise, the PvUbi2+3 and PvUbi2
+9 promoter variants could be useful for tissue-specific
applications in tobacco and other dicots.
Data from transient biolistic bombardment assays can

be highly variable in nature. Therefore, the rice and
switchgrass transient expression assays were repeated in
six independent replicates to increase the reliability of
the resulting data. In addition, the pHLucGWgus vector
used in these experiments contained the ZmUbi1 promo-
ter and the firefly luciferase coding sequence (LUC) in
the vector backbone as an internal control to further
improve the reliability and reproducibility of these transi-
ent expression data, as previously reported [19,61,62].
The methodology used for the bombardment assay in
switchgrass and rice is the first plant transformation
study of promoter expression using an internal LUC cas-
sette control within the same vector backbone as the

experimental promoter-GUS fusion cassette, as opposed
to the standard use of co-transformation [19,63,64].
The promoter-GUS fusions were observed to produce

high levels of transgene expression in both switchgrass
and rice. The comparisons of the expression levels of pro-
moters PvUbi1 and PvUbi2 to other promoters are worth
noting, since the CaMV 35S and ZmUbi1 promoters are
the two most commonly used in monocot transformation.
The PvUbi1 and PvUbi2 promoters showed levels of
expression higher than or equal to those of the ZmUbi1
and CaMV 35S promoters. The PvUbi2 promoter should
be the most effective for driving expression of transgenes
in switchgrass; promoter PvUbi2 resulted in significantly
higher expression levels than ZmUbi1 and CaMV 35S. In
rice, the differences were even more striking, with the
PvUbi2 promoter resulting in expression levels 6.6-fold
higher than that of CaMV 35S, the most commonly used
promoter in this species. The levels of gene expression
detected in rice for the ZmUbi1, OsAct1 and CaMV 35S
promoters in this study reflect previous findings of high
gene expression levels in maize [62]. The PvUbi1 and
PvUbi2 promoters resulted in higher transgene expression
in rice than in switchgrass, demonstrating the flexibility of
these promoters in a monocot species other than switch-
grass, and the potential for similar results in other mono-
cots as well. The stable expression of GUS driven by
PvUbi1 and PvUbi2 promoters in rice leaves, stems and
roots also demonstrates the ubiquitous nature of these
promoters in mature plants. These data suggest that the
PvUbi1 and PvUbi2 promoters should be very effective for
driving constitutive transgene expression in switchgrass,
rice and potentially other monocots.
While expression of the PvUbi1 promoter was not

observed in tobacco, the tissue-specific regulation of the
PvUbi2 promoter and fusion variants could make these
promoters advantageous for some applications that
require expression limited to vascular or reproductive tis-
sues. The decrease of GUS expression in adult leaf tissue
is consistent with the findings that ubiquitin levels are
higher in younger plant tissues [47,65], although conflict-
ing observations have been made with other ubiquitin pro-
moters [66]. When the PvUbi2 promoter variants were
tested for heat shock-induced transgene expression in
tobacco, there was no effect observed on the level of GUS
expression. However, it is worth noting that the ubq1-1
promoter from tomato exhibited increased native tran-
script levels under heat shock conditions, but once fused
to the GUS gene and stably expressed in tobacco, exhib-
ited no response to heat shock induction [39], suggesting
that the heat shock of ubiquitin promoters can yield differ-
ent results when compared between native species and
transgenic plant expression. In contrast, heat shock induc-
tion of the ZmUbi1 promoter resulted in increased
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expression levels in native maize tissue as well as trans-
genic rice callus and protoplasts [18,65,67], and sugarcane
[40]. However, heat shock has been reported to have a
variety of effects on polyubiquitin promoters including up-
regulation [18-20,33], down-regulation [38,68] and no
change [34]. The heat shock element consensus sequence
(CNNGAANNTTCNNG) reported by Pelham [69] was
not found in the promoter regions of PvUbi1 or PvUbi2,
and no heat shock elements were identified from the
PlantCARE database queries [49]. However, the numerous
putative cis-acting regulatory elements identified in the
promoter regions of PvUbi1 and PvUbi2 could be func-
tionally validated in future studies.

Conclusion
Because ubiquitin is a necessary component of all eukaryo-
tic cells, polyubiquitin genes are prime candidates for the
isolation of highly expressed constitutive promoters. We
identified and characterized promoters from two polyubi-
quitin genes (PvUbi1 and PvUbi2) in switchgrass. Experi-
ments using these promoters resulted in high levels of
expression in switchgrass and rice that equaled or sur-
passed all of the commonly used plant promoters tested in
this study (ZmUbi1, OsAct1, CaMV 35S and 2x35S). In
addition, stable transformation of tobacco with the PvUbi2
+3 and PvUbi2+9 promoter fusion variants showed
expression in seedlings as well as the leaves, pistils and
pollen of mature plants. These data suggest that the
PvUbi1 and PvUbi2 promoters are valuable for genetic
transformation studies and demonstrate the potential
broad versatility of these promoters in monocot and dicot
species.

Methods
Construction and screening of a switchgrass fosmid
library
Panicum virgatum (cv. Alamo) leaf tissue was used to con-
struct a fosmid library (unpublished data). In order to
screen the library for polyubiquitin genes, P. virgatum EST
sequence data (from JGI, Walnut Cove, CA) were aligned
to genomic DNA sequences from rice and maize (NCBI).
From these alignments, primers were designed to amplify
fragments of 700-760 bp in size. Sequence specific primers
(5’-TBACYGGMAAGACBATHACY-3’, 5’-TCCTTYT-
GRATGTTRTARTC-3’) were then used to screen the
library. Fosmids identified to contain polyubiquitin genes
were grown in 50-ml cultures containing 50 μl of fosmid
induction solution (Epicentre Biotechnologies) to increase
copy number, as per manufacturer’s protocol. Nuclear-free
fosmid DNA was extracted using the Qiagen Large Con-
struct Kit. Approximately 10 μg of fosmid DNA [66 ng μl-1]
was sheared to 2-10 kb using the Standard Hydroshear
Shearing Assembly (Genomic Solutions) for 20 cycles at a
speed code of 16. Sheared fragments between 3 - 8 kb were

excised and shotgun libraries were built as described [70].
Ten clones were randomly picked from the sub-clone
library and digested with EcoRI to determine the average
insert size as quality control. A total of 384 sub-clones were
sequenced from both directions using ABI PRISM BigDye
Chemistry (Applied Biosystems, Foster, CA) and run on an
ABI 3730. The sequences were assembled using Phred/
Phrap and annotated in Apollo [71]. The cumulative data
represent an approximate 13-fold coverage of each fosmid.
Fosmid Pv9G7B5 contained two polyubiquitin genes in tan-
dem and in the same orientation, both of which showed
≥ 99.5% sequence identity to switchgrass ESTs from callus,
early floral development, late floral development, root, and
stem tissues. Contig Pv9G7B5 was used for further isolation
of switchgrass ubiquitin promoters.

Sequence analysis
Predictions were made for the location of the ubiquitin
promoters and genes within the Pv9G7B5 fosmid using
FGENESH [72] and GENSCAN [73] and further con-
firmed using blastn in GenBank and aligned with homo-
logous ubiquitin sequences from other plant species in
AlignX (Invitrogen, Carlsbad, CA). Based on these
results, primers were designed to produce amplicons of
PvUbi1 (1991 bp) and PvUbi2 (1861 bp) upstream of
the predicted transcription start site (Additional file 1,
Table S1). Identification of putative regulatory cis-ele-
ments within the promoter regions of PvUbi1 and
PvUbi2 was performed using the PlantCARE database
(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html) [49].

RACE-PCR
The full-length cDNAs (including 5’UTRs, coding
sequence and 3’UTRs) of the PvUbi1 and PvUbi2 genes
were identified using the 5’RACE-PCR and 3’RACE-
PCR, respectively, in the GeneRacer™ kit (Invitrogen,
Carlsbad, CA, USA). Total RNA extractions from leaves
of switchgrass cv. Alamo were performed using the TRI
reagent (MRC, Cincinnati, OH). Approximately 3 μg of
total RNA were used for reverse transcription to gener-
ate cDNA. To remove trace contamination of genomic
DNA, RNA was treated with DNase I according to man-
ufacturer’s instructions (Promega, Madison, Wisconsin,
USA). The resulting 5’ and 3’UTRs of cDNA of both
genes were amplified with the GeneRacer™ kit and
cloned into pCR®8/GW/TOPO® vector (Invitrogen) for
sequence confirmation and analysis. The primers are
listed in Additional file 1, Table S1.

Quantitative reverse transcriptase PCR (qRT-PCR)
Levels of PvUbi1 and PvUbi2 mRNA abundance were
measured using quantitative reverse transcriptase PCR
(qRT-PCR) in a variety of switchgrass tissues. Flower,
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leaf, stem and root tissues of three-month-old green-
house-grown switchgrass (cv. Alamo), and callus gener-
ated from inflorescences of a switchgrass genotype
(Alamo 2) [8] were used for RNA extraction. Total RNA
was isolated using Tri-Reagent (Molecular Research
Center, Cincinnati, OH), and DNA contamination was
removed with DNase treatment (Promega, Madison,
WI) following the manufacturer’s instructions. A switch-
grass actin gene (PvAct) was used as an internal control.
Specific primers to the corresponding genes were
designed (Additional file 1, Table S1) that amplify a sin-
gle product for each corresponding gene, as confirmed
by the melting temperature of the amplicons and gel
electrophoresis. Approximately 3 μg of the total RNA
from three independent experiments were synthesized
into first strand cDNA using the High Capacity cDNA
Reverse Transcription kit (Applied Biosystems, Foster
City, CA) and qRT-PCR was conducted in triplicate
using Power SYBR Green PCR master mix (Applied Bio-
systems) according to the manufacturer’s protocol. Rela-
tive quantification was performed using the standard
curve method, and transcript accumulation of each gene
was normalized to the quantity of expressed switchgrass
actin gene. For quality assurance purposes, only qRT-
PCR assays that resulted in standard curves with the fol-
lowing parameters were considered: 1) linear standard
curve throughout the measured area, 2) standard curve
slope between -3.5 and -3.2, and 3) R2 value above 0.99.

Expression vector construction
All promoters (ZmUbi1, OsAct1, CaMV 35S, 2x35S,
PvUbi1, PvUbi1+3, PvUbi1+9, PvUbi2, PvUbi2+3, PvUbi2
+9) were amplified with specific primer sets shown in
Additional file 1 (Table S1) and cloned into pCR8/GW/
TOPO (Invitrogen, Carlsbad, CA). The PvUbi1 and
PvUbi2 promoter variants were derived from the Pv9G7B5
contig mentioned above, the ZmUbi1 promoter from
pAHC25 [74], the OsAct1 promoter from pCOR113 [75],
the CaMV 35S promoter from pBin-m-gfp5-ER [76], and
the 2x35S promoter from pMDC32 [77]. DNA was con-
firmed by restriction enzyme digests for orientation, and
clones containing the proper orientation were sequence-
verified at the University of Tennessee Molecular Biology
Resource Facility. These amplified promoter regions were
introduced from the pCR8/GW/TOPO backbone into the
binary vectors pGWB533 and pGWB535 [78] using
the Gateway® LR Clonase® II enzyme mix (Invitrogen).
The pGWB533 vector contains the Gateway® cassette
upstream of the uidA coding region (GUS), resulting in
promoter:GUS fusion constructs used for initial promoter
analysis and tobacco transformations. For comparison of
different promoters in switchgrass and rice, the pCR8/
GW/ZmUbi1 vector and the pGWB535 vector (containing
the Gateway® cassette upstream of the firefly luciferase

coding region (LUC)) were LR recombined and the result-
ing ZmUbi1:LUC cassette was cloned along with the Gate-
way® cassette upstream of GUS (cloned from pGWB533)
and termed pHLucGWgus. The reporter gene cassettes
were assembled, sequenced and annotated using Geneious
v5.0.3 software [79]. Each unique promoter described
above was LR recombined into the Gateway-compatible
site of the pHLucGWgus vector upstream and in the cor-
rect frame for GUS protein synthesis and sequence
verified.

Plant materials and tissue culture
Switchgrass cv. Alamo genotype ST1 was provided by
Zeng-Yu Wang from the Noble Foundation [80]. Plants
were maintained in the greenhouse by pruning tillers that
matured beyond the boot stage [81] in a 42% sand, and
58% Fafard 3B soil mix (Conrad Fafard, Inc., Agawama,
MA) in 12-liter plastic pots. Growth conditions consisted
of a 12-h light/12-h dark cycle under 400-watt halide
lamps. The greenhouse temperatures ranged from 20-27°C.
Plants were watered daily, and fertilized weekly with
0.45 kg of Peters® Professional All Purpose Plant Food (St.
Louis, MO) per 379 liters of water. The last culm node of
switchgrass produced immature inflorescences at the E2-
R0 stages [81]. Culm nodes were identified as previously
described by Alexandrova et al. [82]. The 6.5-cm explants
were surface-sterilized with 70% EtOH for 1 minute with
gentle agitation. Explants were then placed in 15% Clorox®

v/v supplemented with 0.01% Tween-20 (Fisher Scientific,
Pittsburgh, PA, USA) and gently agitated for 3 minutes. All
tissues were then rinsed three times at 2-minute intervals.
Sterilized internodes were cut in half longitudinally [82]
and explants were placed cut-side down on solid Murashige
and Skoog (MS) medium [83] supplemented with B5 vita-
mins, 5 μM BAP and 3% sucrose. Explants were incubated
in a growth chamber at 25°C, with cool-white fluorescent
lighting (66-95 μE m-2 s-1) 16-h light/8-h dark cycle for
14 days. After 14 days of culture, immature inflorescences
were used to initiate embryogenic callus cultures. The
inflorescences were dissected out and cut to obtain sections
of rachis tissue measuring 1 cm in length. Inflorescence
pieces were placed on solid N6E medium [84] and incu-
bated at 27°C in the dark with subculturing at three-week
intervals. After the second subculture, callus was separated
from the inflorescences and arranged in a 5 × 5-grid pattern
on plates. Friable embryogenic callus tissue was bulked for
eight months with subcultures at three-week intervals and
used in particle bombardment experiments.
Seeds of rice cv. Taipei 309 were provided by the

USDA National Plant Germplasm System. Kernels from
dehusked seeds were surface-sterilized in 70% EtOH for
2 minutes at 100 RPM. Kernels were then transferred to
a 60% Clorox® v/v supplemented with 0.01% Tween-20,
stirred for 30 minutes and rinsed three times with H2O
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for two minutes. Sterilized kernels were dried, arranged
in a 5 × 5-grid on modified NB medium (MNB) as per
Chen et al. [85] and incubated in the dark at 27°C. Prior
to particle bombardment, rice callus was induced,
selected, and maintained as previously described for 5
months with transfers at 3-week intervals [85]. All
switchgrass and rice media were solidified with 2.5 g l-1

Gelzan™ (Caisson Laboratories, North Logan, UT,
USA) and brought to pH 5.8 prior to autoclaving. Cul-
tures were sealed in Petri dishes with 3M Micropore™
tape (St. Paul, MN, USA).

DNA particle bombardment of switchgrass and rice callus
Transient expression assays of Taipei 309 and ST1
embryogenic callus cultures were conducted following bio-
listic transformation using the Bio-Rad PDS-1000 (Bio-Rad
Laboratories, Hercules, CA). The PDS-1000 was used for
plasmid delivery with 7,584 kPa (1,100 psi) rupture disks,
a microcarrier flight distance of 6 cm and a vacuum of 97
kPa (27 in) Hg [86,87], with all hardware and reagents pro-
duced by Bio-Rad. Microprojectile preparation essentially
followed Trick et al. [88] with the DNA amount decreased
from 625 ng to 300 ng per bombardment, and 10 mg of
0.6 μm diameter gold (Au) particles used instead of 12 mg
of 1 μm particles. Each bombardment consisted of a 10 μl
aliquot placed on the macrocarrier and allowed to dry
completely. Switchgrass and rice callus cultures were incu-
bated for 6 h prior to bombardment on N6 osmotic med-
ium with 0.6 M osmoticum (http://www.agron.iastate.edu/
ptf/protocol/Callus%20bb.pdf), or 0.6 M NB osmotic med-
ium [85], respectively. Each vector was used to bombard
six replicate plates with 50 callus pieces per plate. To test
the functionality of the promoter vectors and the validity
of the bombardment assay, ten rice calli were selected
from each of the first two replications and histochemically
stained for observation of GUS. The five rice calli with the
highest level of expression were selected and photo-
graphed (Additional file 1, Figure S3).

Stable transformation of rice
Stable transformations of rice were performed as described
above for transient expression assays with three excep-
tions: three-month-old rice callus cultures were used and
150 ng of the pHLucGWgus vectors (containing the
PvUbi1, PvUbi1+3, PvUbi1+9, PvUbi2, PvUbi2+3, PvUbi2
+9, ZmUbi1, and CaMV 35S promoters) were used per
bombardment. Rice callus cultures were incubated for 6 h
pre- and 18 h post-bombardment on 0.6 MNB osmotic
medium [85]. Rice callus cultures were selected on
MNBH50 as described [85] to ensure independent events
were recovered. Positive transgenic calli were regenerated
as described by Broothaerts et al. [89] on RGH6 medium
solidified with Phytagel (6 g l-1) without selection and

resulting plantlets were rooted for four weeks on 1/2 MS
medium supplemented with B5 vitamins and hygromycin
B (50 mg l-1) solidified with 3 g l-1 Gelzan™ in Magenta®

GA-7 Plant Culture vessels. Regeneration and rooting
occurred under a 23-h light/1-hr dark photoperiod pro-
vided by cool-white fluorescent light (66-95 μE m-2s-1) at
26°C. Prior to being moved to the greenhouse, a root sam-
ple was harvested and GUS-stained for all transgenics, and
an untransformed control was regenerated without selec-
tion. Plants were allowed to grow in the greenhouse for
approximately two months prior to harvesting tissue for
GUS staining of leaf and stem tissues.

MUG and LUC assays
Following bombardment, gene expression was analyzed
using luciferase and MUG assays. Thirty-six hours post-
bombardment, 25 calli per replicate were ground in 50 μl
of 1× lysis buffer (1× LB) [63]. For the first two replica-
tions, five calli were stained for GUS [90]. Upon lysing the
cells, 350 μl of additional 1× LB were added to each sam-
ple. The cell lysates were centrifuged at 13,000 g for five
minutes at ambient conditions; the tubes were then
rotated 180° and spun again. The soluble protein extracts
produced from each sample were used for 4-methylumbel-
liferyl b-D-glucuronide (MUG) and luciferase assays
[63,64]. For MUG assays, 50-μl of protein extract were
added to 50 μl of assay buffer (1 mM MUG in 1× LB).
Reactions were incubated at 37°C for 24 hours, and subse-
quently terminated with 100 μl of stop buffer (0.2 M
Na2CO3 in H2O). Samples were read in duplicate with the
BioTek® Synergy 2 fluorometer (BioTek, Winooski, VT,
USA) at an excitation wavelength of 360/40 nm and an
emission wavelength of 460/40 nm. The fluorometer was
calibrated with 4-methyl umbelliferone (MU) standards in
stop buffer. MUG results were expressed as micromole
MU released hour-1. Luciferase activity was quantified
twice for each replicate using 25 μl of protein extract. For
each sample reading, 25 μl of sample extract in 1× LB buf-
fer were diluted in 75 μl of Glo-lysis buffer, mixed with
100 μl of ONE-Glo™ Luciferase Assay buffer (Promega
Corporation, Madison, WI, USA) and allowed to incubate
at room temperature for 5 minutes. Non-specific GUS and
luciferase activity was corrected, and normalization of the
MUG data was accomplished using luciferase activity as
previously described [62]. Each unique GUS cassette
allowed the measurement of gene expression to be quanti-
fied. The strength of each promoter was reported relative
to that of the CaMV 35S control, normalized to 1, to cre-
ate a dimensionless value of promoter strength [19,62].

Agrobacterium-mediated transformation of tobacco
The vectors to be tested were transformed into A. tume-
faciens EHA105 as previously described [91]. EHA105
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cells were maintained in liquid YEP medium and all
incubations were performed at 28°C. Tobacco cv. Xanthi
seeds were surface-sterilized, transformed, and regener-
ated using 50 mg l-1 hygromycin for selection according
to published methods [92].

Histochemical staining
Plant tissues were stained for GUS activity in microwell
plates and placed at 37°C overnight as described [90]. For
tobacco, intact tissue stains were made homogenous by
vacuum infiltrating in solution for 30 minutes. For opti-
mal visualization of stained tissues, chlorophyll was
removed by repeatedly washing the tissue with a solution
containing a 3:1 ratio of EtOH and acetic acid, ultimately
storing tissue samples in 70% EtOH for imaging. For rice
tissues, GUS staining assays were completed using a
modified GUS buffer [93] brought to pH 7 [94], and
chlorophyll was removed from the tissues as described by
Cervera [95].

Statistical analysis
Data for relative expression of promoters using the
MUG and LUC assays were subjected to Levene’s test
[96] to check for homogeneity of variance using the
software package JMP® (Version 8.0.2 SAS Institute
Inc., Cary, NC). When p ≤ 0.05, the data were consid-
ered to have unequal variances and were subjected to a
square root transformation prior to ANOVA. Data sets
with equal variances were subjected to ANOVA. If a sig-
nificant difference was detected (p ≤ 0.05) using
ANOVA, the least significant difference test (LSD) was
employed to analyze the data for significant differences
between treatments within an experiment (p = 0.05).

GenBank accession numbers
The PvUbi1 and PvUbi2 genes containing the promoters,
5’ UTR exons and introns, polyubiquitin ORFs, and the 3’
UTR regions have been deposited in GenBank (accession
numbers HM209467 and HM209468, respectively).

Additional material

Additional file 1: Supplemental data.These data include sequences of
the promoter candidate regions for PvUbi1 and PvUbi2, vector diagrams,
representative images of the biolistic transformations and sequences of
primers used in this study.
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