4,613 research outputs found

    Macroscopic approximation to relativistic kinetic theory from a nonlinear closure

    Get PDF
    We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the Entropy Production Principle; the evolution equation is obtained by the method of moments, and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann's equation in 0+1 dimensions and show that it tracks kinetic theory better than second order fluid dynamics.Comment: v2: 6 two-column pages, 2 figures. Corrected typos and a numerical error, and added reference

    A hydrodynamic approach to QGP instabilities

    Get PDF
    We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.Comment: 11 pages, no figures. v2: minor changes, added references. Accepted in Phys. Rev.

    Edge Effects in Finite Elongated Graphene Nanoribbons

    Full text link
    We analyze the relevance of finite-size effects to the electronic structure of long graphene nanoribbons using a divide and conquer density functional approach. We find that for hydrogen terminated graphene nanoribbons most of the physical features appearing in the density of states of an infinite graphene nanoribbon are recovered at a length of 40 nm. Nevertheless, even for the longest systems considered (72 nm long) pronounced edge effects appear in the vicinity of the Fermi energy. The weight of these edge states scales inversely with the length of the ribbon and they are expected to become negligible only at ribbons lengths of the order of micrometers. Our results indicate that careful consideration of finite-size and edge effects should be applied when designing new nanoelectronic devices based on graphene nanoribbons. These conclusions are expected to hold for other one-dimensional systems such as carbon nanotubes, conducting polymers, and DNA molecules.Comment: 4 pages, 4 figure

    Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons

    Full text link
    We present a novel comprehensive first-principles theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene nanoribbons. The oxidation schemes considered include hydroxyl, carboxyl, ether, and ketone groups. Using screened exchange density functional theory, we show that these oxidized ribbons are more stable than hydrogen-terminated nanoribbons except for the case of the etheric groups. The stable oxidized configurations maintain a spin-polarized ground state with antiferromagnetic ordering localized at the edges, similar to the fully hydrogenated counterparts. More important, edge oxidation is found to lower the onset electric field required to induce half-metallic behavior and extend the overall field range at which the systems remain half-metallic. Once the half-metallic state is reached, further increase of the external electric field intensity produces a rapid decrease in the spin magnetization up to a point where the magnetization is quenched completely. Finally, we find that oxygen containing edge groups have a minor effect on the energy difference between the antiferromagnetic ground state and the above-lying ferromagnetic state.Comment: 5 pages,5 figures, 1 tabl

    Heavy quark collisional energy loss in the quark-gluon plasma including finite relaxation time

    Get PDF
    In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time τπ\tau_\pi on the energy loss. We find that the collisional energy loss depends appreciably on τπ\tau_\pi . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using τπ\tau_\pi = 0 can be \sim 10%\% larger than the one obtained using τπ\tau_\pi = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for τπ\tau_\pi is much larger that the one obtained with the τπ\tau_\pi derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.Comment: v2: 5 pages, 4 figures, added references. Accepted for publication in Phys. Rev.

    "Frictions in financial and labor markets": a summary of the 35th Annual Economic Policy Conference

    Get PDF
    This article contains synopses of the papers presented at the 35th Annual Economic Policy Conference of the Federal Reserve Bank of St. Louis held October 21-22, 2010. The conference theme was “Frictions in Financial and Labor Markets.” Leading participants in this field presented their research and commentary.Labor market ; Financial markets

    Magnetic Exchange Couplings from Noncollinear Spin Density Functional Perturbation Theory

    Full text link
    We propose a method for the evaluation of magnetic exchange couplings based on noncollinear spin-density functional calculations. The method employs the second derivative of the total Kohn-Sham energy of a single reference state, in contrast to approximations based on Kohn-Sham total energy differences. The advantage of our approach is twofold: It provides a physically motivated picture of the transition from a low-spin to a high-spin state, and it utilizes a perturbation scheme for the evaluation of magnetic exchange couplings. The latter simplifies the way these parameters are predicted using first-principles: It avoids the non-trivial search for different spin-states that needs to be carried out in energy difference methods and it opens the possibility of "black-boxifying" the extraction of exchange couplings from density functional theory calculations. We present proof of concept calculations of magnetic exchange couplings in the H--He--H model system and in an oxovanadium bimetallic complex where the results can be intuitively rationalized.Comment: J.Chem. Phys. (accepted
    corecore