354 research outputs found
Finite element methods for integrated aerodynamic heating analysis
This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability
Finite element methods for integrated aerodynamic heating analysis
Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented
Unstructured Mesh Methods for the Simulation of Hypersonic Flows
This report summarizes the research undertaken, at Aeronautics Department of the Massachusetts Institute of Technology, during the approximately five year period, February 94 - March 99. This work is part of a larger effort aimed at providing a reliable fast turn around capability for the prediction of hypersonic flows over complete vehicle configurations
One-dimensional shock-capturing for high-order discontinuous Galerkin methods
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology
The Efficient Computation of Bounds for Functionals of Finite Element Solutions in Large Strain Elasticity
We present an implicit a-posteriori finite element procedure to compute bounds for functional outputs of finite element solutions in large strain elasticity. The method proposed relies on the existence of a potential energy functional whose local minima, over a space of suitably chosen continuous functions, corresponds to the problem solution. The output of interest is cast as a constrained minimization problem over an enlarged discontinuous finite element space. A Lagrangian is formed were the multipliers are an adjoint solution, which enforces equilibrium, and hybrid fluxes, which constrain the solution to be continuous. By computing approximate values for the multipliers on a coarse mesh, strict upper and lower bounds for the output of interest on a suitably refined mesh, are obtained. This requires a minimization over a discontinuous space, which can be carried out locally at low cost. The computed bounds are uniformly valid regardless of the size of the underlying coarse discretization. The method is demonstrated with two applications involving large strain plane stress incompressible neo-hookean hyperelasticity.Singapore-MIT Alliance (SMA
High Order Finite Element Discretization of the Compressible Euler and Navier-Stokes Equations
We present a high order accurate streamline-upwind/Petrov-Galerkin (SUPG) algorithm for the solution of the compressible Euler and Navier-Stokes equations. The flow equations are written in terms of entropy variables which result in symmetric flux Jacobian matrices and a dimensionally consistent Finite Element discretization. We show that solutions derived from quadratic element approximation are of superior quality next to their linear element counterparts. We demonstrate this through numerical solutions of both classical test cases as well as examples more practical in nature
A note on upper bound formulations in limit analysis
In this paper we study some recent formulations for the computation of upper bounds in limit analysis. We show that a previous formulation presented by the authors does not guarantee the strictness of the upper bound, nor does it provide a velocity field that satisfies the normality rule everywhere. We show that these deficiencies are related to the quadrature employed for the evaluation of the dissipation power. We derive a formulation that furnishes a strict upper bound of the load factor, which in fact coincides with a formulation reported in the literature. From the analysis of these formulations we propose a post-process which consists in computing exactly the dissipation power for the optimum upper bound velocity field. This post-process may further reduce the strict upper bound of the load factor in particular situations. Finally, we also determine the quadratures that must be used in the elemental and edge gap contributions so that they are always positive and their addition equals the global bound gap
Recommended from our members
A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures
We present a 3D hybridizable discontinuous Galerkin (HDG) method for nonlinear elasticity which can be efficiently used for thin structures with large deformation. The HDG method is developed for a three-field formulation of nonlinear elasticity and is endowed with a number of attractive features that make it ideally suited for thin structures. Regarding robustness, the method avoids a variety of locking phenomena such as membrane locking, shear locking, and volumetric locking. Regarding accuracy, the method yields optimal convergence for the displacements, which can be further improved by an inexpensive postprocessing. And finally, regarding efficiency, the only globally coupled unknowns are the degrees of freedom of the numerical trace on the interior faces, resulting in substantial savings in computational time and memory storage. This last feature is particularly advantageous for thin structures because the number of interior faces is typically small. In addition, we discuss the implementation of the HDG method with arc-length algorithms for phenomena such as snapthrough, where the standard load incrementation algorithm becomes unstable. Numerical results are presented to verify the convergence and demonstrate the performance of the HDG method through simple analytical and popular benchmark problems in the literature
Computing bounds for linear functionals of exact weak solutions to Poisson's equation
We present a method for Poisson’s equation that computes guaranteed upper and lower bounds for the values of piecewise-polynomial linear functional outputs of the exact weak solution of the infinite-dimensional continuum problem with piecewise-polynomial forcing. The method results from exploiting the Lagrangian saddle point property engendered by recasting the output problem as a constrained minimization problem. Localization is achieved by Lagrangian relaxation and the bounds are computed by appeal to a local dual problem. The proposed method computes approximate Lagrange multipliers using traditional finite element approximations to calculate a primal and an adjoint solution along with well known hybridization techniques to calculate interelement continuity multipliers. The computed bounds hold uniformly for any level of refinement, and in the asymptotic convergence regime of the finite element method, the bound gap decreases at twice the rate of the energy norm measure of the error in the finite element solution. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity that is linear in the number of elements in the finite element discretization. The elemental contributions to the bound gap are always positive and hence lend themselves to be used as adaptive indicators, as we demonstrate with a numerical example
Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson’s Equation
We present a method for Poisson’s equation that computes guaranteed upper and lower bounds for the values of linear functional outputs of the exact weak solution of the infinite dimensional continuum problem using traditional finite element approximations. The guarantee holds uniformly for any level of refinement, not just in the asymptotic limit of refinement. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity which is linear in the number of elements in the finite element discretization.Singapore-MIT Alliance (SMA
- …