20 research outputs found

    Anisotropic optical response of the diamond (111)-2x1 surface

    Full text link
    The optical properties of the 2Ă—\times1 reconstruction of the diamond (111) surface are investigated. The electronic structure and optical properties of the surface are studied using a microscopic tight-binding approach. We calculate the dielectric response describing the surface region and investigate the origin of the electronic transitions involving surface and bulk states. A large anisotropy in the surface dielectric response appears as a consequence of the asymmetric reconstruction on the surface plane, which gives rise to the zigzag Pandey chains. The results are presented in terms of the reflectance anisotropy and electron energy loss spectra. While our results are in good agreement with available experimental data, additional experiments are proposed in order to unambiguously determine the surface electronic structure of this interesting surface.Comment: REVTEX manuscript with 6 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.html Submitted to Phys. Rev.

    Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model

    Get PDF
    In spina bifida the neural tube fails to close during the embryonic period and it is thought that prolonged exposure of the unprotected spinal cord to the amniotic fluid during pregnancy causes additional neural damage. Intra-uterine repair might protect the neural tissue from exposure to amniotic fluid and might reduce additional neural damage. Biodegradable collagen scaffolds may be useful in case of fetal therapy for spina bifida, but biochemical properties need to be studied. The aim of this study was to investigate whether biodegradable collagen scaffolds can be used to treat full-thickness fetal skin defects. We hypothesized that the pro-angiogenic growth factors VEGF and FGF2 would enhance vascularization, epidermialization and lead to improved wound healing. To investigate the effect of these two growth factors, a fetal sheep model for skin defects was used. Compared to wounds treated with bare collagen scaffolds, wounds treated with growth factor-loaded scaffolds showed excessive formation of capillaries and less myofibroblasts were present in these wounds, leading to less contraction. This study has demonstrated that collagen scaffolds can be used to treat fetal skin defects and that the combination of collagen scaffolds with VEGF and FGF2 had a beneficial effect on wound healing
    corecore