19 research outputs found

    Diversity, compositional and functional differences between gut microbiota of children and adults

    Get PDF
    The gut microbiota has been shown to play diverse roles in human health and disease although the underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further understanding into inter-individual differences, with more precise characterization of the pathways by which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile the stool microbiome of children and adults from two population-based cohort studies, comprising 2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile datasets derived from the Dutch population were generated. The comparison of the two cohorts showed that children had significantly lower gut microbiome diversity. Furthermore, we observed higher relative abundances of genus Bacteroides in children and higher relative abundances of genus Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. Overall, we identified compositional and functional differences in gut microbiome between children and adults in a population-based setting. These microbiome profiles can serve as reference for future studies on specific human disease susceptibility in childhood, adulthood and specific diseased populations

    A multicentre cohort study of serum and peritoneal biomarkers to predict anastomotic leakage after rectal cancer resection

    Get PDF
    Aim: Anastomotic leakage (AL) is one of the most feared complications after rectal resection. This study aimed to assess a combination of biomarkers for early detection of AL after rectal cancer resection. Method: This study was an international multicentre prospective cohort study. All patients received a pelvic drain after rectal cancer resection. On the first three postoperative days drain fluid was collected daily and C-reactive protein (CRP) was measured. Matrix metalloproteinase-2 (MMP2), MMP9, glucose, lactate, interleukin 1-beta (IL1β), IL6, IL10, tumour necrosis factor alpha (TNFα), Escherichia coli, Enterococcus faecalis, lipopolysaccharide-binding protein and amylase were measured in the drain fluid. Prediction models for AL were built for each postoperative day using multivariate penalized logistic regression. Model performance was estimated by the c-index for discrimination. The model with the best performance was visualized with a nomogram and calibration was plotted. Results: A total of 292 patients were analysed; 38 (13.0%) patients suffered from AL, with a median interval to diagnosis of 6.0 (interquartile ratio 4.0–14.8) days. AL occurred less often after partial than after total mesorectal excision (4.9% vs 15.2%, P = 0.035). Of all patients with AL, 26 (68.4%) required reoperation. AL was more often treated by reoperation in patients without a diverting ileostomy (18/20 vs 8/18, P = 0.03). The prediction model for postoperative day 1 included MMP9, TNFα, diverting ileostomy and surgical technique (c-index = 0.71). The prediction model for postoperative day 2 only included CRP (c-index = 0.69). The prediction model for postoperative day 3 included CRP and MMP9 and obtained the best model performance (c-index = 0.78). Conclusion: The combination of serum CRP and peritoneal MMP9 may be useful for earlier prediction of AL after rectal cancer resection. In clinical practice, this combination of biomarkers should be interpreted in the clinical context as with any other diagnostic tool

    Introduction of advanced laparoscopy for peritoneal dialysis catheter placement and the outcome in a University Hospital

    No full text
    Background Peritoneal dialysis (PD) catheters can be obstructed by omental wrapping or migration, leading to catheter malfunction. Multiple catheter placement techniques have been described. Advanced laparoscopy with fixation of the catheter and omentum has been reported to improve functional outcome compared to basic laparoscopy without fixation. This feasibility study describes surgical technique, complications, and comparison of the functional outcome of advanced versus basic laparoscopic catheter placement. Methods Between July 2016 and April 2019, the advanced laparoscopy technique was applied in all eligible patients. Two experienced surgeons placed the catheters in a standardized procedure. Peri-operative complications and functional outcome of the catheter were scored. Results were compared to a historical cohort retrieved from our RCT performed earlier using basic laparoscopy. Findings The basic laparoscopic group (BLG) consisted of 46 patients and the advanced laparoscopic group (ALG) of 32. Complication rate in both groups was similar and low with 7% in the BLG and 6% in the ALG (p = 1.0). There was a trend toward better functional catheter outcome in the ALG (88%) compared to the BLG (70%) (p = 0.1). Part of the catheter failures in the ALG could be related to the learning curve. After revision surgery, 94% of patients in the ALG had a functional catheter. These findings lead to the set-up of a multi-center randomized-controlled trial, currently running, comparing basic to advanced laparoscopic techniques
    corecore