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Diversity, compositional and 
functional differences between gut 
microbiota of children and adults
Djawad Radjabzadeh1, Cindy G. Boer   1, Sanne A. Beth2,3, Pelle van der Wal   1, 
Jessica C. Kiefte-De Jong2,3,6,7, Michelle A. E. Jansen2, Sergey R. Konstantinov4, 
Maikel P. Peppelenbosch   4, John P. Hays5, Vincent W. V. Jaddoe   3,6, M. Arfan Ikram   6,  
Fernando Rivadeneira   1,3,6, Joyce B. J. van Meurs1,6, André G. Uitterlinden   1,3,6, 
Carolina Medina-Gomez   1,3,6, Henriette A. Moll2 & Robert Kraaij1*

The gut microbiota has been shown to play diverse roles in human health and disease although the 
underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further 
understanding into inter-individual differences, with more precise characterization of the pathways by 
which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile 
the stool microbiome of children and adults from two population-based cohort studies, comprising 
2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in 
the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile 
datasets derived from the Dutch population were generated. The comparison of the two cohorts 
showed that children had significantly lower gut microbiome diversity. Furthermore, we observed 
higher relative abundances of genus Bacteroides in children and higher relative abundances of genus 
Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the 
glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) 
biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances 
of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic 
(vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine 
and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and 
isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. 
Overall, we identified compositional and functional differences in gut microbiome between children and 
adults in a population-based setting. These microbiome profiles can serve as reference for future studies 
on specific human disease susceptibility in childhood, adulthood and specific diseased populations.

The human gut microbiome is dynamic, shaped by multiple factors and has been shown to play an important role 
in human health. Several studies have reported an association between alterations in the composition of the gut 
microbiome and various gastrointestinal (GI)1–9 and non-GI10–15 disease conditions in both children and adults. 
These changes in composition of the microbiome (known as dysbiosis) and their associations with health and 
disease have led to an increased interest in the complex microbial community of the gut16,17. However, our under-
standing of the relationship between the gut microbiome and health and disease still remains superficial at best. A 
fundamental issue hampering progress in this respect is that our lack of knowledge on the composition and varia-
tion of the gut microbiome across the human lifespan remains limited. So far, most microbiome studies have been 
relatively small in terms of sample size and have usually focused on specific diseases and phenotypes, with most 
publications having used a case-control study design, what makes the analyses more vulnerable to methodologi-
cal challenges. A better understanding of the variation in microbiome composition (from stool or other sources) 
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and its role in the etiology of chronic diseases can be achieved through the study of large and well-characterized 
population-based cohorts, which generate rich information on many different physiological parameters, disease 
status, medication use, dietary intake, and other layers of “omics” data from individual participants.

Up to now, microbiome studies have focused mainly on adult populations, whereas it has been shown that the 
intestinal microbiome undergoes dynamic changes in diversity and composition during the human lifespan and 
particularly during development; with the most substantial changes believed to occur throughout childhood18–20. 
Interestingly, emerging data suggest that early alterations in the gut microbiome are associated with an increased 
risk of developing diseases later in childhood and adulthood e.g., asthma21,22 and Crohn’s disease23. These studies 
were, however, limited by low sample sizes. If the field of microbiota dynamics is to move forward, it requires 
studies in well-characterized general population cohorts of different ages, including studies investigating pediat-
ric cohorts. So far, a complete description of diversity, compositional and functional differences between children 
and adults in a large, homogeneous and population-based cohorts have not been reported.

The above-mentioned considerations prompted us to profile the stool microbiome composition of children 
and adults within two large, independent and extensively characterized population-based cohorts: the Generation 
R Study (GenR, visit at 9 years) and the Rotterdam Study (RS, sub-cohort RSIII-2). In this publication, we report 
our findings on the differences in gut microbiota between 2,111 children aged 9-12 years and 1,427 adults >40 
years of age living in the same city with similar urban surroundings.

Methods
Study populations and sample collection.  The Generation R Study (GenR) is a population-based 
prospective multi-ethnic pregnancy cohort study from fetal life until young adulthood conducted in the city of 
Rotterdam24. The study was designed to identify early environmental and genetic factors and causal pathways 
underlying normal and abnormal growth during development during childhood. GenR recruited 9,749 children 
undergoing several rounds of follow-up after birth. Stool sample collection started in 2012 at a mean age of 9.8 
years (SD: 0.32). Ethics approval was obtained from the Medical Ethical Committee of Erasmus MC (MEC-2012-
165) and written informed consent was obtained from all participants’ parents. All methods were performed in 
accordance with the Declaration of Helsinki.

The Rotterdam Study (RS) is a prospective population-based cohort study established in 1990 to study deter-
minants of disease and disability in Dutch adult individuals. The original design and updates of this study have 
been described in detail25. RS consists of four sub-cohorts and comprises approximately 18,000 inhabitants of the 
Ommoord suburb in Rotterdam (which is predominantly populated by individuals of European ethnicity (about 
96%)), aged ≥40 years. The collection of fecal samples started in 2012 among the RS-III sub-cohort comprising 
3,932 participants. This study was approved by the Medical Ethical Committee of Erasmus MC (MEC-02-1015) 
and by the Ministry of Health, Welfare and Sport of the Netherlands. All subjects provided written consent prior 
to participation in the study. All methods were performed in accordance with the Declaration of Helsinki.

Stool samples were collected at home by the participants using a Commode Specimen Collection System 
(Covidien, Mansfield, MA). An aliquot of approximately 1 g was transferred to a 25 × 76 mm feces collection tube 
(Minigrip Nederland, Lelystad, The Netherlands) without preserving agent included and sent through regular 
mail to the Erasmus MC. A short questionnaire addressing date and time of defecation, current or recent antibi-
otics use (past year), recent probiotics use (past 3 days), and recent travel activities (past month), was filled out 
by the participants and included in the package. Upon arrival at Erasmus MC, samples were recorded and stored 
at −20 °C. The only modification in the collection protocol for the GenR cohort (as compared to RS) was that, in 
case of delay, the samples were stored by participants at 4 °C (home fridge) before mailing to Erasmus MC. This 
modification allowed to better preserve samples that were produced in the evening or during the weekend.

DNA isolation.  Stool samples from the two cohorts were randomly taken from the −20 °C freezer and allowed 
to thaw for 10 minutes at room temperature prior to DNA isolation. Samples with inconsistent or lack of information 
on sample production and samples in which mold growth was observed were excluded (Supp. Fig. 1). An aliquot of 
approximately 300 mg was homogenized in stool stabilizing buffer according to the manufacturer’s protocol (Arrow 
Stool DNA; Isogen Life Science, De Meern, The Netherlands). Homogenized samples were bead beated in Lysing 
Matrix B tubes containing 0.1 mm silica beads (MP Biomedicals, LLC, Bio Connect Life Sciences BV, Huissen, The 
Netherlands) using the MagNA Lyser instrument (Roche Diagnostics, Almere, The Netherlands) at 7,000 rpm for 
45 seconds. Samples were then centrifuged at 6,000 × g for 5 min and 0.5 ml of supernatant was subjected to auto-
mated DNA isolation (Arrow; DiaSorin S.P.A., Saluggia, Italy) according to the manufacturer’s protocol using setting 
‘Stool DNA 2.0’ in batches of 12 samples per run. DNA concentration was measured using Quant-iT PicoGreen 
dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA) and DNA was stored at −20 °C.

16S rRNA gene sequencing.  The V3 and V4 variable regions of the 16 S rRNA gene were amplified using 
the 309F-806R primer pair and dual indexing (12 base pairs (bp) each on the forward and reverse primers) as pre-
viously described26. Amplicons were normalized using the SequalPrep Normalization Plate kit (Thermo Fischer 
Scientific) and pooled. The pools were purified prior to sequencing using Agencourt AMPure XP (Beckman 
Coulter Life Science, Indianapolis, IN) and the amplicon size and quantity of the pools were assessed on the 
LabChip GX (PerkinElmer Inc., Groningen, The Netherlands). PhiX Control v3 library (Illumina Inc., San Diego, 
CA) was spiked into (~10%) the pooled amplicon libraries and each pool was sequenced on an Illumina MiSeq 
sequencer (MiSeq Reagent Kit v3, 2 × 300 bp) at an average depth of 50,000 read-pairs per sample.

Data pre-processing, OTU picking and quality control.  Phylogenetic multi-sample profiling was 
performed using an in-house developed analysis pipeline (microRapTor) based on QIIME (version 1.9.0)27 and 
UPARSE (version 8.1)28 software packages. Briefly, index sequences (12 bp) were removed from each read and 
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concatenated to generate a unique index of 24 bp for each read-pair. Spacer and primer sequences were removed 
using TAGCleaner (version 0.16)29. Paired reads were merged using PEAR (version 0.9.6)30 with the following set-
tings: minimum overlap of 10 bp (default) and an average read quality phred-score of 20 over a 30 bp sliding win-
dow. Merged reads shorter than 200 bp were discarded. Reads were de-multiplexed using QIIME including extra 
quality filtering steps: merged reads were truncated before three consecutive low-quality bases, ambiguous bases 
were not allowed. Chimeric reads were removed using UCHIME (version 8.1)28. Duplicate samples, samples with 
less than 10,000 reads, and samples from participants that have used antibiotics (self-reported) in one year prior 
to sample production were excluded (Supp. Fig. 1). The 16 S sequence reads of the remaining samples (2,214 
for GenR and 1,544 for RS) were randomly subsampled at 10,000 reads per sample (after rarefaction analysis). 
Combined reads of all samples, in each cohort separately, were clustered into operational taxonomic units (OTUs) 
using UPARSE at a minimum cluster identity of 97%. The representative read from each OTU was then mapped 
to the SILVA rRNA database version 12831 using RDP Naïve Bayesian Classifier version 2.1232. OTUs containing 
less than 40 reads were removed as described by Benson et al.33. This threshold was established based on the 
correlation analysis of OTU tables of 5 pairs of technical replicates, of which DNA was amplified, sequenced and 
profiled twice (Supp. Fig. 2). The sequence data was then analyzed for α-diversity metrics (Shannon diversity 
Index, species richness and Inverse Simpson Index). Final OTU filtering was performed by removing OTUs with 
a total read count less than 0.005% of all reads and OTUs observed in less than 1% of the total number of samples 
of each cohort as described previously34. The final OTU table was divided into 5 sub-tables at different taxonomic 
levels (in QIIME environment): phylum, class, order, family, and genus.

Statistical analyses.  All statistical analyses were performed in R35 using vegan36, phyloseq37 and MaAsLin38 
packages. As MaAsLin performs paralleled multiple analyses, q < 0.05 (false discovery rate (FDR) multiple testing 
corrected) was used as significance threshold. All MaAsLin models were adjusted for technical covariates and 
other confounders as described in the sections below.

Technical covariates in the initial stool 16S datasets of the two cohorts.  After generating the ini-
tial 16S datasets of both the RS and GenR cohorts, the effects of collection time (time in mail; TIM) and the yield 
of DNA isolation runs (Batch; Supp. Fig. 3) on the 16S profiles were assessed. To identify the impact of these tech-
nical covariates on the α-diversity and overall profiles, Shannon α-diversity and Bray-Curtis dissimilarity metrics 
were calculated in each cohort using ‘diversity’ and ‘vegdist’ functions in vegan, respectively. The effects of the 
covariates on α-diversity were assessed by linear regression ‘lm’ function in package stats. The basic model was 
adjusted for age and sex. Each of the two technical covariates were stepwise added in order to identify its contri-
bution to the model. Then, likelihood ratio test was used to compare these nested models. Additionally, in GenR 
self-reported ethnicity was added to the model to inspect and compare the effect of this covariate. Subsequently, 
permutation analysis of variance (PERMANOVA) was performed to inspect the global effects of these technical 
covariates on the overall profiles using the ‘adonis’ function in vegan. Furthermore, for TIM, additive general 
linear regression analyses of single genus-level OTUs were performed in MaAsLin. For this, we used sub-sampled 
datasets that included only samples up to a certain TIM (up to 7 days). Regression analyses in MaAsLin were 
performed after arcsine square root transformation of the relative abundance data and were adjusted for age, sex 
and BMI to assess the effect of TIM exclusively.

Validation of the final stool 16S datasets of GenR and RS.  Final datasets were constructed by exclud-
ing samples that had been in the mail for 3 (in RS) or 5 (for GenR) days (see Results section). Average relative 
abundances of the six major phyla were compared to those of other large cohorts. GenR profiles were compared to 
those reported by the Copenhagen Prospective Study on Asthma in Childhood (COPSAC) cohort (Copenhagen, 
Denmark; n = 156; age range = 4–6 years39), and RS profiles were compared to those reported by the Dutch 
LifeLines-DEEP (LLD) cohort (Groningen, the Netherlands; n = 1,135; age range = 20–90 years40,41) and the 
Belgian Flemish Gut Flora Project (FGFP) cohort (Leuven, Belgium; n = 1,106; age range = 20–80 years42). In 
addition, we performed association analyses of BMI with Shannon α-diversity and single OTUs at genus level to 
confirm this well-established association11,13,40 in our cohorts, and by comparing associated OTUs observed in 
our cohorts to those reported by the above-mentioned cohorts.

The LifeLines DEEP (LLD) study was approved by the ethics committee of the University Medical Centre 
Groningen, document number METC UMCG LLD: M12.113965 and all methods were performed in accordance 
with the Declaration of Helsinki. All participants signed an informed consent form prior to study enrolment.

Flemish Gut Flora Project (FGFP) procedures were approved by the medical ethics committee of the 
University of Brussels/Brussels University Hospital (approval 143201215505, 5/12/2012) and all methods were 
performed in accordance with the Declaration of Helsinki. A declaration concerning the FGFP privacy policy was 
submitted to the Belgian Commission for the Protection of Privacy. Participants were recruited through repeated 
announcements in print, audiovisual, and social media as well as through the FGFP website, where volunteers 
could enroll from January 2013 onwards (http://www.vib.be/nl/mens-en-gezondheid/darmflora-project/Pages/
default.aspx).

The Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was approved by all relevant author-
ities including the Danish Ethical Committee (H-B-2008-093), and the Danish Data Protection Agency (2015-
41-3696) and all methods were performed in accordance with the Declaration of Helsinki. Both parents provided 
informed consent prior to participation.

Comparing the gut microbiome profiles and functions between children and adults.  To 
compare gut microbiome profiles between children and adults, we selected samples from European partici-
pants. Ethnic background of GenR participants was assessed based on self-reported country of birth of four 
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grandparents as described elsewhere43. Ethnic background of RS participants was assessed based on self-reported 
ethnic backgrounds of the four grandparents. We selected European participants by combining all European 
countries together with Americans, Oceanics and North Africans as evaluated elsewhere44. In short, the partic-
ipant was deemed to be of non-Dutch origin if one parent was born abroad. If both parents were born abroad, 
the country of birth of the participant’s mother defined the ethnic background. Ethnicities of the parents were 
derived from the grandparents using the same protocol. The different ethnicities based on the parents country 
of birth or ethnic background were narrowed to three main ancestry groups: Europeans, including all European 
countries, together with Americans, Oceanics, and North Africans (with parents from Algeria, Egypt, Libya, 
Morocco, Sudan, Tunisia, and Western Sahara); Africans, including Sub‐Saharan Africans, Dutch Antilleans, and 
Surinamese Creoles; and Asians, including all Asian countries and Surinamese Hindustanis. Reads were subsam-
pled at 10,000 reads per sample and pooled. Classification was performed (as described above) in one combined 
run. Shannon α-diversities were calculated and tested for significant differences between the two cohorts using 
Wilcoxon signed-rank test (1000 permutations). Between-sample Bray-Curtis dissimilarities were calculated 
and principal coordinate analysis (PCoA) was performed and tested for significant differences between the two 
cohorts using PERMANOVA. During the beta diversity analysis we adjusted for DNA isolation batch and time 
in mail since these were the technical covariates. Linear regression models intending to determine significantly 
different genera between both cohorts were performed in MaAsLin. During analysis we adjusted for BMI, sex, 
technical covariates (TIM and Batch), and multiple testing by FDR (q < 0.05).

To compare the functional metagenome of gut bacteria between children and adults, we used the PICRUSt 
(v.1.1.0) tool45 to obtain predicted bacterial functions. HUMAnN2 (v0.99) was used to identify the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways46. For the identification of the specific pathway biomark-
ers distinguishing the gut microbiome of the children from those of adults, we performed a linear discriminant 
effect size (LEfSe) analysis47 with the default settings: α (ANOVA) = 0.05 and logarithmic LDA (linear discrimi-
nant analysis) score = 2.0.

Results
Stool microbiota 16S rRNA data generation in the GenR and RS cohorts.  Selection of subjects.  
For GenR 4,959, and for RS 2,440 participants were invited to provide a stool sample. In total, 2,921 (response 
rate = 59%) and 1,691 (response rate = 69%) were received at Erasmus MC for GenR and RS stool samples, 
respectively (Supp. Fig. 1). Excluding antibiotic users resulted in exclusion of 196 samples from GenR and 7 
samples from RS. In GenR, individuals who used antibiotics in the last year had a significantly lower microbiome 
diversity and altered microbiome composition (Supp. Table 1). For probiotic use and recent travelling activity 
outside the Netherlands we could not detect significant effects on diversity or composition in the two cohorts 
(Supp. Table 1). After quality control (Supp. Fig. 1), 16S rRNA data of 2,214 subjects in the initial dataset of GenR 
and 1,544 subjects in the initial dataset of RS were included.

Assessing the influence of technical co-variates and sample exclusion.  Since stool samples were collected at ambi-
ent temperature via regular mail, we assessed the effects of time in the mail (TIM) on the microbiome profiles. 
Furthermore, since DNA-yields varied across different DNA isolation batches (Supp. Fig. 3), we assessed its effect 
on the microbiome profiles as well.

Upon longer periods of TIM (except for day 7 in GenR), an increase in the relative abundance of phylum 
Proteobacteria was observed in the average profiles of both cohorts (Supp. Fig. 4). For RS only, an increase 
in phylum Bacteroidetes was observed between days 6 and 7. In contrast, we did not observe any substantial 
changes in phylum-level profiles with respect to the DNA-Batch variable (Supp. Fig. 4). Moreover, TIM had a 
small but significant negative effect on α-diversity in GenR and RS (beta = −0.02 alpha units/day, p = 9.3e-03 and 
beta = −0.03, p = 4.6e-03, respectively). Again, we did not observe an effect of Batch on α-diversity. Correlations 
of TIM and Batch with overall composition (β-diversity) in both cohorts were small but significant (R2 = 0.004, 
p = 0.001 and R2 = 0.002, p = 0.005 for TIM and R2 = 0.01, p = 0.001 and R2 = 0.005, p = 0.001 for Batch in 
GenR and RS, respectively). In taxonomy-based analyses (MaAsLin) at genus-level of both datasets for TIM, we 
observed increased abundances of genus Escherichia/Shigella upon prolonged times in the mail (Fig. 1). However, 
these differences were only significant after 3 days in the RS cohort and after 5 days in the GenR cohort (Fig. 1). 
Furthermore, we observed smaller decreases in the abundances of a number of genera, including Roseburia and 
Coprococcus, upon prolonged TIM.

In order to further evaluate the importance of TIM and Batch effects, we added them to linear models for the 
analysis of well-established association of α-diversity with BMI11,13,40 in both GenR and RS. Although, the esti-
mates (betas) of the exposure (i.e., BMI) remained similar after various levels of adjustment, the model including 
sex, age and TIM (model 1) as co-variates provided a better fit to the data than the model including only sex and 
age (model 0; likelihood ratio test: p = 5.8e-03 and p = 5.5e-03 for GenR and RS, respectively). Including Batch, 
within model 1 (model 2), resulted in a better fit to the data in RS only (Table 1; p = 1.9e-04).

Based on the results of the effects of the technical covariates on the profiles in the RS and GenR cohorts, only 
stool samples that arrived at the research center within 3 days for RS and within 5 days for GenR, were included 
in the final 16 S datasets (Fig. 1). Furthermore, TIM and Batch were included as technical covariates in all further 
analyses.

Description and validation of final 16S rRNA datasets of the GenR and RS cohorts.  After qual-
ity control and sample exclusion, the final 16 S datasets comprised 2,111 individuals in GenR and 1,427 sub-
jects in RS. The average age of GenR children was 10 (range = 9 to 12) years and included participants from 13 
self-reported ethnicities with Dutch being the most frequent one (62%; Table 2 and Supp. Fig. 5). The average 
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age of RS participants in the final 16S dataset was 57 years (range = 46 to 88) and 82% were Dutch based on 
self-reported ethnicity (Table 2 and Supp. Fig. 5).

A total number of 661 OTUs were identified in the GenR cohort and 777 OTUs in the RS cohort (Fig. 2). Of 
these, 656 OTUs overlapped between the two cohorts, leaving 5 OTUs specific for GenR and 42 OTUs specific 
for RS. For both datasets, variations in overall microbiome profiles were driven by the relative abundances of the 
four major phyla Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria (Supp. Fig. 6). We observed higher 

Figure 1.  Effect of ambient temperature on individual OTUs. Regression analysis of individual OTUs with 
time in mail (TIM) for samples in GenR (A) and RS (B). At each TIM. the initial OTU table was sub-sampled 
to contain only samples up to that TIM. Red bars indicate bacteria that decreased in abundance and green bars 
bacteria that increased upon increasing TIM. Q-values are indicated; only significantly abundant OTUs are 
presented.

Initial dataset GenR (N = 2,214) RS (N = 1,544)

Linear model: α-diversity ~ BMI + covariates R2 Estimate P-value R2 Estimate P-value

BMI 0.008 −0.031 9.6e-06 0.015 −0.021 9.9e-07

BMI + sex 0.008 −0.031 7.3e-06 0.014 −0.021 1.0e-06

Model 0 BMI + sex + age 0.008 −0.032 7.0e-06 0.015 −0.021 7.8e-07

Model 1 BMI + sex + age + TIM 0.011 −0.032 1.0e-05 0.019 −0.021 9.2e-07

Model 2 BMI + sex + age + TIM + Batch 0.011 −0.032 1.0e-05 0.027 −0.020 1.6e-06

BMI + sex + age + TIM + Batch + ethnicity 0.038 −0.021 3.2e-03

Table 1.  The effect of technical and biological covariates on the association of BMI with Shannon diversity 
in the 16S datasets of GenR and RS cohorts. Stepwise linear model used for each covariates in the analysis of 
association of microbial diversity with BMI (TIM: time in mail).

GenR RS

Total 2.111 1.427

Females (%) 50 58

Age (years ± SD) 9.8 ± 0.32 56.8 ± 5.9

BMI (kg/m² ± SD) 17.3 ± 2.4 27.5 ± 4.5

Table 2.  Characteristics of GenR and RS cohort. Age and BMI information at the time of visit at which the fecal 
sample was collected.
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Shannon α-diversities in RS (mean 4.02; SD = 0.50) than in the GenR cohort (mean 3.81; SD = 0.57; Fig. 2). 
Furthermore, we observed the absence of kingdom Archaea and a lower abundance of phylum Firmicutes in the 
GenR cohort as compared to RS (Fig. 2).

To validate our datasets, we compared the averaged phylum level profiles of our cohorts with those of other 
cohorts of similar characteristics (i.e., age range, ethnic background). In addition, we tested the well-established 
association between BMI and alpha diversity11,13,40, and we determined the association between single OTUs and 
BMI and compared these results with other cohorts.

To compare GenR and RS 16S datasets with other populations, we used the 16S datasets of the COPSAC39, 
LLD40,41 and FGFP42 cohorts. The average phylum-level profiles of GenR were similar to those of COPSAC, and 
the average phylum-level profiles of RS were similar to those of LLD and FGFP (Fig. 2). The lower abundance of 
phylum Firmicutes in the GenR cohort was also observed in the COPSAC cohort39.

Further, in order to validate our microbiome datasets, we investigated the association of gut microbiome with 
BMI. We excluded subjects of non-Northern European origin from both GenR and RS, which resulted in a dataset 
of 1,712 GenR samples and a dataset of 1,371 RS samples.

α-diversity was negatively associated with BMI after adjusting for age, sex and technical covariates in both 
cohorts (beta = −0.019, SE = 2.3e-03, p = 1.1e-03 for GenR and beta = −0.015, SE = 2.8e-03, p = 1.8e-06 for RS). 
We compared this association with observations reported in similar  cohorts of Northern European origin (LLD 
and FGFP). The negative correlation of α-diversity with BMI was in line with findings reported previously40. At 
genus-level, we identified 27 BMI-associated genera in GenR and 33 BMI-associated genera in RS (Table 3, Supp. 
Table 2), of which 14 genera overlapped across both cohorts. In the RS cohort, we confirmed 6 genera found to 
be associated with BMI in the LLD and FGFP cohorts (Table 3). In GenR we only confirmed two genera (Alistipes 
and Barnesiella) to be associated with BMI in RS, LLD and FGFP cohorts. As previously reported40,48 we also 
observed the association between increased abundance of genus Akkermansia and lower BMI.

Comparison of RS and GenR stool microbiome diversities, compositions and functions.  To 
analyze differences in gut microbiome compositions between children and adults, both datasets were combined 
after exclusion of the non-Northern European samples. The combined dataset included 3,082 samples: 1,371 
from RS and 1,712 from GenR and the final OTU table contained 173 genera. Although Shannon α-diversity was 
not associated with age in each cohort separately (linear model; GenR: beta = −0.003, p = 0.91; RS: beta = 0.001, 
p = 0.63), Shannon α-diversity was significantly higher in the RS cohort than in the GenR cohort in the com-
bined dataset (p < 2.2e-16, mean = 5.9, sd = 0.74 for RS and mean = 5.58, sd = 0.82 for GenR). Also, the over-
all compositions (Bray Curtis distances) differed significantly between both groups (Fig. 3B; PERMANOVA; 
R2 = 0.06; p = 0.001). We observed a 2 to 3 times lower abundance of phylum Firmicutes in the GenR cohort 
as compared with RS (p < 2.2e-16). Furthermore, we observed higher abundances of the gram-negative classes 
(Bacteroidia, Negativicutes and some classes from phylum Proteobacteria) in children. Regression analysis, in 
MaAsLin, on the relative abundances of the individual genera showed higher relative abundances of 59 gen-
era in RS compared to GenR and higher relative abundances of 20 genera in GenR compared to the RS cohort 

Figure 2.  Characteristics of the final datasets of the two cohorts. GenR (A) and RS (B). Number of observed 
taxa at each taxonomy level Top: indicates the number of unique OTUs identified in each taxonomic clade, 
top A: RS cohort, top B: GenR cohort. Bottom: Donut plots indicate the average relative abundances of the top 
major phyla in each cohort. Donut plots of the COPSAC cohort (children aged 6 years) and doughnut plots of 
FGFP and LLD cohorts (adults) are plotted for comparison with the abundance in GenR and RS.
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(q < 0.05; Supp. Table 3). The largest differences were observed for genera from family Lachnospiraceae includ-
ing Blautia, Lachnospiraceae, Anaerostipes, Dorea, Fusicatenibacter, Coprococcus, Roseburia, Ruminoclosteridium, 
Butyricicoccus and Lachnoclostridium that were more abundant in RS, and genera from families Ruminococcaceae 
and Bacteroidaceae including Bateroides, Faecalibacterium, Alistipes, Barnesiella, Parabacteroides, Bifidobacterium 
and Odoribacter that were more abundant in GenR (Fig. 3C). The most abundant genera were Bacteroides in 
GenR (children) cohort and Blautia in the RS (adults) cohort (Fig. 3D).

To assess functional differences in the gut microbiome between children and adults, we predicted the func-
tional content based on the 16S rRNA data using PICRUSt. Analyses of the differences in the predicted functional 
metagenomics data between children and adults showed significant overrepresentation of 25 pathways in children 
and 25 pathways in adults (Fig. 4, Supp. Table 4). A remarkable difference between GenR and RS was the predom-
inance of catabolic pathways in GenR (Val, Leucine, iso-Leucine degradation; ko00280) and its opposite in RS 
(Val, Leucine, iso-Leucine biosynthesis; ko00290). Putative colonization-related pathways like biofilm formation 
(ko05111), flagellar assembly (ko02040) and LPS biosynthesis (ko00540) were only enriched in GenR cohort.

Discussion
In this publication we report on the 16S stool microbiota profiles of 3,538 subjects from two large, deeply pheno-
typed and well-characterized population-based cohorts: the Generation R (GenR) Study and the Rotterdam Study 
(RS). The 16S microbiome datasets originated from both children (GenR: n = 2,111) and adults (RS: n = 1,427) 
populations.

In general, the stool microbiota within RS had similar profiles as profiles in the previously published LLD 
and FGFP cohorts40–42. Similarly, our GenR stool microbiota possessed similar profiles as those observed in the 
COPSAC cohort39.

Further, both of our cohorts replicated the previously reported negative association between α-diversity and 
BMI40. Additionally, BMI was also associated with community composition (Bray-Curtis) in both RS and GenR 
cohorts, as reported for the LLD and FGFP cohorts. Also, Alistipes and Barnesiella were reported as negatively 
associated with BMI in all four of these cohorts. Interestingly, the lower Firmicutes abundance observed in the 
GenR and COPSAC children cohorts compared to RS, LLD and FGFP adult cohorts suggests an age-specific phe-
nomenon is responsible for this difference. However, understanding these differences merit further investigation. 
Thus, as both our RS and GenR datasets contain many characteristics that are similar to previously published 

Genus

GenR RS FGFP LLD

N = 1,712 N = 1,371 N = 1,106 N = 1,135

Coefficient q-value Coefficient q-value Coefficient q-value Coefficient q-value

ChristensenellaceaeR7group −0.0044 8.3E-04 −0.0034 6.5E-08

Alistipes −0.0024 8.1E-03 −0.0015 4.2E-04 −0.1326 9.7E-06 −0.0026 4.3E-05

Ruminococcus1 −0.0014 2.5E-03

Coprococcus2 −0.0014 1.7E-02

Ruminiclostridium6 −0.0019 3.4E-04 −0.0012 1.1E-03

Anaerotruncus −0.0008 1.0E-03 −0.0016 8.5E-02

Barnesiella −0.0016 9.2E-03 −0.0007 2.9E-03 −0.0761 1.1E-02 −0.0030 5.3E-02

Akkermansia −0.0006 3.8E-02

Ruminiclostridium9 −0.0005 6.4E-03 −0.0004 4.3E-03

Odoribacter −0.0010 1.6E-03 −0.0004 1.1E-02 −0.0019 8.1E-02

Oscillospira −0.0004 2.4E-03 −0.0933 1.9E-03

Butyricicoccus 0.0006 1.2E-02

Lactobacillus 0.0006 8.5E-04

Lachnoclostridium 0.0006 4.5E-02

Coprococcus3 0.0008 3.3E-02

Dorea 0.0014 2.3E-03 0.1408 2.6E-06

Blautia 0.0021 4.6E-02

Streptococcus 0.0026 1.1E-05

Parabacteroides −0.0015 2.6E-02

Oscillibacter −0.0005 3.1E-02

Terrisporobacter 0.0005 4.2E-02

Intestinibacter 0.0014 9.7E-04

Romboutsia 0.0020 2.6E-03

Bifidobacterium 0.0046 3.2E-04

Table 3.  Single OTU associations with BMI in the GenR and RS cohorts and further replication in FGFP and 
LLD. Bacterial associations with BMI in the RS, GenR and other cohort studies. The +/− sign of the coefficient 
values indicate the direction of the correlation of the genus with BMI. q-value = FDR corrected P-value. Only 
known bacteria are presented.
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large cohort studies, we conclude that our datasets allow valid investigations into the composition and variation 
of the gut microbiota across child and adult subjects.

Comparing the gut microbiome composition between children and adults in a combined dataset of 3,083 
children and adults showed significant clustering of the cohorts based on overall composition (PCoA beta diver-
sity) and significant different α-diversities. The lower diversity in GenR suggested a lack of ‘maturation’ of the gut 
microbiome in children. However, we did not observe a significant age-related change in alpha diversity within 

Figure 3.  Comparison of the gut microbiome diversity and composition between adults (RS) and children 
(GenR). (A) boxplots of the Shannon diversity Index. (B) ordination plot of the gut microbiome composition in 
the two cohorts based on Bray-Curtis dissimilarities. The centroid and dispersion of each cohort is represented 
by the cohort name and ellipses, respectively. Clustering of RS and GenR was tested for significance using 
PERMANOVA. (C) Circular representation of the taxonomic tree of the microbiome compositions of the 
two cohorts. Each node represents one taxon at different taxonomic level. Orange nodes are the taxa that 
were observed with higher abundance in the GenR cohort and green nodes represent the taxa that were 
higher abundant in the RS cohort. (D) The genera represented the most in each cohort. On the x-axis the 
arcsine squared root transformed coefficients of the most significantly abundant genera in each cohort are 
shown. Orange bars represent GenR and green bars represent RS. Minus signs in the x-axis are used only for 
visualization.
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each cohort separately. This might be due to the narrow age-range in both cohorts (9.8 ± 0.32 in GenR, 56.8 ± 5.9 
in RS, Table 2). At genus level, the relative abundances of genus Bacteroides were higher in GenR than in RS. 
Members of the genus Bacteroides are specialized at utilizing both plant and host-derived polysaccharides49–52. 
As compared to other genera, Bacteroides have a large number of genes specialized to metabolize various glycans. 
They also have environmental sensors that control their expression upon exposure to glycans. The predicted 
metagenomics data showed indeed higher abundances of glycan degradation pathways in children’s gut micro-
biome than in adults. In contrast, the relative abundances of the genus Blautia were higher in RS than in GenR. 
Blautia digest complex carbohydrates like whole-grains53 and its abundance has been shown to be reduced in 
patients with colorectal cancer54 and in children with type 1 diabetes55. Its abundance has also been reported to be 
inversely related to bone mineral density in human56. In fact, the relative abundance of Blautia and Bacteroides, 
has been implicated as a determinant of the so-called ‘healthy microbiome’ due to differences in the metabolic 
functions of these genera54,55,57,58.

With respect to metabolic functions, we identified many predicted carbohydrate pathways that were signifi-
cantly enriched in adult versus child metagenome datasets, with many of these carbohydrate pathways involving 
the metabolism of simple sugars such as fructose and mannose. However, whether these differences in microbiota 
profiles can be explained by possible differences in energy demand and metabolic programming between adults 
and children remains to be proven.

Other interesting differences in the predicted functional pathways between children and adults, were observed 
in antibiotics synthesis pathways. The vancomycin biosynthesis pathways were significantly higher in the gut 
microbiome of children as compared to adults. Vancomycin is a glycopeptide with activity against gram-positive 
bacteria, while gram-negative bacteria are resistant to this drug because of their distinct cell-wall59,60. On the 
other hand, biosynthesis of ansamycin was higher in adults than in children. Ansamycin is another antibiotic with 
activity against gram-positive, as well as gram-negative bacteria61. These findings indicate potential differential 
anti-bacterial activities between the microbiota of children as compared to adults, which appears to be in line 
with our observation of higher relative abundances of gram-negative bacteria in the gut microbiota of children. 
However, the exact role of antibiotic production in modulating the microbiota profiles of children and adults 
remains to be shown.

Another difference identified by predictive functional pathway analysis was the differential biosynthesis 
of vitamin B classes by the gut microbiota of children and adults. Children’s gut microbiomes are associated 
with pathways related to increased biosynthesis of vitamins B2, B6, and B9 (folate), while in adults vitamin B1 
and B5 biosynthesis pathways appear to be increased. This predictive finding could be linked to age-dependent 

Figure 4.  Predicted functional composition of metagenomes based on 16S rRNA gene sequencing data from 
GenR and RS cohorts. LEfSe based on the PICRUSt dataset revealed differentially enriched metabolic pathways 
associated with GenR (orange) or RS (green).
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differences in, for example, the requirement for folate, which is particularly important for cell division and growth 
during pregnancy and childhood.

In children, the enrichment of putative colonization-related pathways involving biofilm formation, fla-
gella assembly and LPS biosynthesis, may provide insights into the development of intra-microbiome 
and host-microbiome interactions, and also be linked to our observation of higher relative abundances of 
gram-negative bacteria in children - LPS is a major constituent of the cell wall of gram-negative bacteria.

Finally, observing photosynthesis pathway (ko00195) in the functional data could be explained by the presence 
of Cyanobacteria in our datasets, as Cyanobacteria are photosynthetic bacteria. Likely, the photosynthesis path-
ways detected in the PICRUSt analysis were derived from these Cyanobacteria. The presence of Cyanobacteria in 
the gut may have a dietary origin62.

As with all studies, the current study was not free of limitations. One of the main discussion points involves 
the fact that stool samples were not directly frozen and immediately stored at −80 °C. For logistical reasons relat-
ing to the large scale cohorts recruited, we depended on postal delivery of home-collected stool samples to the 
research laboratory. Several studies have addressed the effects on microbiota composition when sample collection 
is performed at room temperature63–68, and observed that longer periods of storage at ambient temperature may 
affect microbiota profile composition and decrease diversity in the samples. We, therefore, analyzed the effects of 
stool sample collection at ambient temperature in both cohorts. Within our own initial datasets, we addressed this 
issue by using several approaches and observed increased abundances of Escherichia/Shigella when stool samples 
were mailed to the research laboratory and received after 3 days (RS) or after 5 days (GenR) in the post. Therefore, 
to avoid the influence of any delayed processing time, we excluded samples that had been in the mail for longer 
than 3 days in RS and 5 days in GenR cohorts.

Next to the increase in abundance of Escherichia/Shigella upon prolonged times in the mail, we observed sev-
eral taxa that decreased over time (Coprococcus and Roseburia). These decreases were, however, relatively low and 
likely a consequence of the compositionality of the data: if one OTU increases, other OTUs decrease. We decided 
to adjust for these technical artifacts in further analyses by including time in mail as a technical cofactor.

The actual explanation for the difference in microbiota composition stability over time between RS and GenR 
cohorts is likely due to the fact that GenR participants were asked to keep their samples in their home fridge at 
4 °C (for posting on Monday) if they were produced at the weekend, allowing better preservation of samples com-
pared to RS participants who mailed their samples over the weekend. As well as the exclusion of 3 day and 5 day 
samples, we also included TIM as a technical covariate in all analyses.

Next to excluding samples that had been in the mail for too long, we also excluded recent antibiotic users from 
our datasets (196 samples from GenR and 7 samples from RS). Antibiotic use had a significant effect on alpha 
diversity and overall composition in GenR (Supplementary Table 1), whereas in RS the number of users was 
too small to have a detectable effect. Probiotic use and travel abroad were also recorded, but we could not detect 
significant effects on alpha diversity and composition in both cohorts. Given the small effect size of probiotic use, 
this study might be underpowered to conclude a lack of effect.

Recent studies indicate that the method of DNA isolation is the main source of technical variance in micro-
biome studies69–71. We, therefore, analyzed the effect of DNA isolation throughout the 391 runs (134 runs for 
RS and 257 runs for GenR) that were performed in this study and observed a batch effect causing a reduction 
in average DNA yield per sample in a proportion of the hundreds of runs performed. As we could not trace any 
clear cause for this technical artifact we introduced a “Batch” variable that allowed us to discriminate between low 
yield and the high yield runs. This “Batch” variable was significantly associated with overall profiles in the GenR 
and RS cohorts and was included as technical covariate in all analyses. Another, more general limitation when 
comparing different cohort datasets, is the accuracy of replication of 16S profiles, since sample collection, sample 
storage, DNA isolation, PCR amplification, amplified 16S rRNA variable region, the sequencing technique used 
and downstream bioinformatics may differ between different cohorts. For example, out of 33 associated OTUs 
with BMI, we could only replicate 6 in LLD and FGFP. In addition, geographical differences and lack of repetition 
may limit the accuracy of replicating microbiota profiles from different countries. In addition, although (besides 
using harmonized sample collection and dataset generation) we adjusted for the potential confounders in the 
analyses comparing children and adults, we should be aware that we cannot totally discard the presence of resid-
ual stratification as a consequence of the fact that both populations were derived from different cohorts.

To conclude, in this study we performed microbiota profiling on the stools of 2,111 children in the age-range 
of 9 to 12 years and 1,427 adult individuals in the range of 46 to 88 years of age. We observed a clear distinction 
between the gut microbiomes of children as compared to adults, including differences in microbiota diversity 
and Firmicutes and Bacteroidetes abundances. These changes were associated with predicted shifts in functional 
properties, including in energy metabolism, antibiotic production and the production of essential B-vitamins. 
These observations are likely due to the development of human-gut microbiome interactions with age. As both 
GenR and the RS cohort have been deeply characterized24,25 we here presented two valuable datasets for studying 
the possible association of the human stool microbiome and, life style, environmental factors, and health and 
disease outcomes. In addition, as the participants of both cohorts have been genotypes, also association between 
host genetics and host microbiome could be investigated.

URLs. The Rotterdam Study: http://www.ergo-onderzoek.nl/wp/; Generation R study: https://www.gener-
ationr.nl/researchers/; QIIME: http://qiime.org/; USEARCH: https://www.drive5.com/usearch/; PEAR: https://
sco.h-its.org/exelixis/web/software/pear/; TAGcleaner: http://tagcleaner.sourceforge.net/; Vegan R package: 
https://cran.r-project.org/web/packages/vegan/index.html; phyloseq: https://joey711.github.io/phyloseq/; 
PICRUSt: http://picrust.github.io/picrust/; HUMAnN2: http://huttenhower.sph.harvard.edu/humann2; LEfSe: 
https://bitbucket.org/biobakery/biobakery/wiki/lefse.
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Data availability
All relevant summary data supporting this study are available within the article and its supplementary information 
files, or additional unpublished data can be provided by the corresponding author upon reasonable request. Due 
to ethical and legal restrictions, individual-level data of the Generation R Study and Rotterdam Study cannot be 
made publicly available. These data are available upon request to the data manager of the Rotterdam Study Frank 
van Rooij (f.vanrooij@erasmusmc.nl) or of the Generation R Study Claudia Kruithof (c.kruithof@erasmusmc.nl) 
and subject to local rules and regulations. This includes submitting a proposal to the management team of RS, 
where upon approval, analysis needs to be done on a local server with protected access, complying with GDPR 
regulations.

Received: 8 February 2019; Accepted: 31 December 2019;
Published: xx xx xxxx

References
	 1.	 Carroll, I. M., Chang, Y.-H., Park, J., Sartor, R. B. & Ringel, Y. Luminal and mucosal-associated intestinal microbiota in patients with 

diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2, 19 (2010).
	 2.	 Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant 

irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver. Physiol. 301, G799–G807 (2011).
	 3.	 Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory 

bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).
	 4.	 Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel 

diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).
	 5.	 Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. 

Gastroenterology 133, 24–33 (2007).
	 6.	 Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PloS One 6, e20647–e20647 (2011).
	 7.	 Malinen, E. et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. 

J. Gastroenterol. 100, 373 (2005).
	 8.	 Ringel, Y. & Carroll, I. M. Alterations in the intestinal microbiota and functional bowel symptoms. Gastrointest. Endosc. Clin. N. Am. 

19, 141–150 (2009).
	 9.	 Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S. & Doerffel, Y. Biostructure of fecal microbiota in healthy subjects 

and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568–579 (2008).
	10.	 Kalliomäki, M., Carmen Collado, M., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may 

predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).
	11.	 Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
	12.	 Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. 

Gut 56, 661–667 (2007).
	13.	 Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 

(2006).
	14.	 Vael, C. & Desager, K. The importance of the development of the intestinal microbiota in infancy. Curr. Opin. Pediatr. 21, 794–800 

(2009).
	15.	 Wang, M. et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 121, 129–134 

(2008).
	16.	 Floch, M. H. Advances in Intestinal Microecology. Nutr. Clin. Pract. 27, 193–194 (2012).
	17.	 Ringel-Kulka, T. Targeting the intestinal microbiota in the pediatric population. Nutr. Clin. Pract. 27, 226–234 (2012).
	18.	 Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS 

Biol. 5, e177–e177 (2007).
	19.	 Tiihonen, K., Ouwehand, A. C. & Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 9, 107–116 (2010).
	20.	 Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
	21.	 Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 

(2007).
	22.	 Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings 

in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).
	23.	 Hviid, A., Svanström, H. & Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54 (2011).
	24.	 Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).
	25.	 Ikram, M. A. et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 32, 807–850 (2017).
	26.	 Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq 

platform. Microbiome 2, 6 (2014).
	27.	 Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
	28.	 Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
	29.	 Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and 

metagenomic datasets. BMC bioinformatics 11, 341–341 (2010).
	30.	 Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 

614–620 (2014).
	31.	 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 

41, D590–D596 (2013).
	32.	 Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new 

bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
	33.	 Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and 

host genetic factors. Proc. Natl. Acad. Sci. USA 107, 18933–18938 (2010).
	34.	 Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 

57–59 (2013).
	35.	 R Foundation for Statistical Computing, Vienna, Austria. A language and environment for statistical computing, https://www.R-

project.org (2010).
	36.	 Oksanen, J. et al. Vegan: community ecology package, http://CRAN.R-project.org/package=vegan (2013).
	37.	 McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. 

PloS One 8, e61217–e61217 (2013).
	38.	 Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, 

R79–R79 (2012).
	39.	 Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).

https://doi.org/10.1038/s41598-020-57734-z
https://www.R-project.org
https://www.R-project.org
http://CRAN.R-project.org/package=vegan


1 2Scientific Reports |         (2020) 10:1040  | https://doi.org/10.1038/s41598-020-57734-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	40.	 Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 
(2015).

	41.	 Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. 
Science 352, 565–569 (2016).

	42.	 Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
	43.	 Medina-Gomez, C. et al. Bone mass and strength in school-age children exhibit sexual dimorphism related to differences in lean 

mass: The Generation R Study. J. Bone Miner. Res. 31, 1099–1106 (2016).
	44.	 Medina-Gómez, C. et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: 

assessment of evolutionary selection pressures. Mol. Biol. Evol. 32, 2961–2972 (2015).
	45.	 Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. 

Biotechnol. 31, 814–821 (2013).
	46.	 Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. 

Biol. 8, e1002358–e1002358 (2012).
	47.	 Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
	48.	 Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. 

Acad. Sci. USA 110, 9066–9071 (2013).
	49.	 Anderson, K. L. & Salyers, A. A. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer 

membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171, 3192–3198 (1989).
	50.	 Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 3 (2016).
	51.	 Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 

10, 323–335 (2012).
	52.	 Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156–e156 (2007).
	53.	 Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 

(2013).
	54.	 Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with 

colorectal cancer. PloS One 7, e39743–e39743 (2012).
	55.	 Murri, M. et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 

11, 46 (2013).
	56.	 Hou, A. Y., Kaczmarek, J. L., Khan, N. A. & Holscher, H. D. Dietary fiber and the human gastrointestinal microbiota as predictors of 

bone health. FASEB J. 31, lb322 (2017).
	57.	 Bajaj, J. S. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked 

to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675–G685 (2012).
	58.	 Hong, P.-Y., Croix, J. A., Greenberg, E., Gaskins, H. R. & Mackie, R. I. Pyrosequencing-based analysis of the mucosal microbiota in 

healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PloS One 6, e25042–e25042 (2011).
	59.	 Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 

(1989).
	60.	 Shivaramaiah, H. S., Relhan, N., Pathengay, A., Mohan, N. & Flynn, H. W. Endophthalmitis caused by gram-positive bacteria 

resistant to vancomycin: clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am. J. 
Ophthalmol. Case Rep. 10, 211–214 (2018).

	61.	 Wrona, I. E., Agouridas, V. & Panek, J. S. Design and synthesis of ansamycin antibiotics. C. R. Chim. 11, 1483–1522 (2008).
	62.	 Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
	63.	 Carroll, I. M., Ringel-Kulka, T., Siddle, J. P., Klaenhammer, T. R. & Ringel, Y. Characterization of the fecal microbiota using high-

throughput sequencing reveals a stable microbial community during storage. PloS One 7, e46953–e46953 (2012).
	64.	 Dominianni, C., Wu, J., Hayes, R. B. & Ahn, J. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 

14, 103 (2014).
	65.	 Gorzelak, M. A. et al. Methods for improving human gut microbiome data by reducing variability through sample processing and 

storage of stool. PloS One 10, e0134802–e0134802 (2015).
	66.	 Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community 

structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86 (2010).
	67.	 Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev. 25, 

407–416 (2016).
	68.	 Tedjo, D. I. et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PloS One 

10, e0126685–e0126685 (2015).
	69.	 Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 

(2017).
	70.	 Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 

(2014).
	71.	 Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) 

project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

Acknowledgements
The generation and management of stool microbiome data for the Generation R Study (Focus @9) and the 
Rotterdam Study (RSIII-2) was executed by the Human Genotyping Facility of the Genetic Laboratory of the 
Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. We thank Nahid El Faquir and 
Jolande Verkroost-Van Heemst for their help in sample collection and registration, and Kamal Arabe, Hedayat 
Razawy and Karan Singh Asra for their help in DNA isolation and sequencing. Furthermore, we thank drs. Jeroen 
Raes and Jun Wang (KU Leuven, Belgium) for their guidance in 16S rRNA profiling and dataset generation. 
Djawad Radjabzadeh was funded by an Erasmus MC mRACE grant “Profiling of the human gut microbiome”. 
The authors are very grateful to the study participants of the Rotterdam Study, the staff from the Rotterdam Study 
(particularly L. Buist and J.H. van den Boogert) and the participating general practitioners and pharmacists. 
The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands 
Organization for the Health Research and Development (ZonMW), the Research Institute for Diseases in the 
Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, 
the European Commission (DG XII), and the Municipality of Rotterdam. The GWAS datasets are supported by 
the Netherlands Organization of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the 
Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases 
in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organization for 
Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project nr. 050-060-810. FR 

https://doi.org/10.1038/s41598-020-57734-z


13Scientific Reports |         (2020) 10:1040  | https://doi.org/10.1038/s41598-020-57734-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

and CMG received funding from ZonMW-VIDI, project nr. 016.136.367. The Generation R Study is conducted 
by the Erasmus Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of 
the Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam 
Homecare Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-
MDC), Rotterdam. We acknowledge the contribution of children and parents, general practitioners, hospitals, 
midwives and pharmacies in Rotterdam. The general design of Generation R Study was made possible by financial 
support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, the Netherlands 
Organization for Health Research and Development (ZonMW), the Netherlands Organization for Scientific 
Research (NWO), the Ministry of Health, Welfare and Sport and the Ministry of Youth and Families. This project 
also received funding from the European Union’s Horizon 2020 research and innovation programme under 
the following grant agreements: [No. 633595 (DynaHEALTH) and No. 733206 (LIFECYCLE)]. Furthermore, 
Generation R received additional funding from the European Research Council (ERC Consolidator Grant, ERC-
2014-CoG-648916).

Author contributions
R.K., A.G.U., H.A.M. conceptualized the study. R.K., D.R., P.V.D.W., S.A.B., J.C.K.D.J., M.A.E.J., M.P.P., H.A.M., 
V.W.V.J. and M.A.I. were responsible for project administration and sample collection. P.V.D.W. and D.R. were 
responsible for wet laboratory work and documentation of the samples. R.K., A.G.U., M.P.P. and H.A.M. were 
responsible for funding acquisition. D.R., R.K., A.G.U., S.R.K., J.P.H. and P.V.D.W. designed the methodology. 
D.R. was responsible for software, data generation, carried out the formal analyses, wrote the original draft of 
the manuscript and visualized the results. R.K., A.G.U., H.A.M., and S.R.K. supervised the project. C.G.B. and 
C.M.G. contributed to the data generation and analyses. R.K., C.G.B., C.M.G., S.A.B., J.C.K.D.J., S.R.K., M.P.P., 
J.P.H., F.R., J.B.J.V.M., A.G.U. reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-57734-z.
Correspondence and requests for materials should be addressed to R.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-57734-z
https://doi.org/10.1038/s41598-020-57734-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Diversity, compositional and functional differences between gut microbiota of children and adults

	Methods

	Study populations and sample collection. 
	DNA isolation. 
	16S rRNA gene sequencing. 
	Data pre-processing, OTU picking and quality control. 
	Statistical analyses. 
	Technical covariates in the initial stool 16S datasets of the two cohorts. 
	Validation of the final stool 16S datasets of GenR and RS. 
	Comparing the gut microbiome profiles and functions between children and adults. 

	Results

	Stool microbiota 16S rRNA data generation in the GenR and RS cohorts. 
	Selection of subjects. 
	Assessing the influence of technical co-variates and sample exclusion. 

	Description and validation of final 16S rRNA datasets of the GenR and RS cohorts. 
	Comparison of RS and GenR stool microbiome diversities, compositions and functions. 

	Discussion

	Acknowledgements

	Figure 1 Effect of ambient temperature on individual OTUs.
	Figure 2 Characteristics of the final datasets of the two cohorts.
	Figure 3 Comparison of the gut microbiome diversity and composition between adults (RS) and children (GenR).
	Figure 4 Predicted functional composition of metagenomes based on 16S rRNA gene sequencing data from GenR and RS cohorts.
	Table 1 The effect of technical and biological covariates on the association of BMI with Shannon diversity in the 16S datasets of GenR and RS cohorts.
	Table 2 Characteristics of GenR and RS cohort.
	Table 3 Single OTU associations with BMI in the GenR and RS cohorts and further replication in FGFP and LLD.




