3 research outputs found

    Conditional dependence tests reveal the usage of ABCD rule features and bias variables in automatic skin lesion classification

    No full text
    Skin cancer is the most common form of cancer, and melanoma is the leading cause of cancer related deaths. To improve the chances of survival, early detection of melanoma is crucial. Automated systems for classifying skin lesions can assist with initial analysis. However, if we expect people to entrust their well-being to an automatic classification algorithm, it is important to ensure that the algorithm makes medically sound decisions. We investigate this question by testing whether two state-of-the-art models use the features defined in the dermoscopic ABCD rule or whether they rely on biases. We use a method that frames supervised learning as a structural causal model, thus reducing the question whether a feature is used to a conditional dependence test. We show that this conditional dependence method yields meaningful results on data from the ISIC archive. Furthermore, we find that the selected models incorporate asymmetry, border and dermoscopic structures in their decisions but not color. Finally, we show that the same classifiers also use bias features such as the patient's age, skin color or the existence of colorful patches

    The relationship between Alzheimer's-related brain atrophy patterns and sleep macro-architecture

    No full text
    Introduction Sleep is increasingly recognized as a major risk factor for neurodegenerative disorders such as Alzheimer's disease (AD). Methods Using an magnetic resonance imaging (MRI)–based AD score based on clinical data from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) case-control cohort, we investigated the associations between polysomnography-based sleep macro-architecture and AD-related brain atrophy patterns in 712 pre-symptomatic, healthy subjects from the population-based Study of Health in Pomerania. Results We identified a robust inverse association between slow-wave sleep and the AD marker (estimate: −0.019; 95% confidence interval: −0.03 to −0.0076; false discovery rate [FDR] = 0.0041), as well as with gray matter (GM) thicknesses in typical individual cortical AD-signature regions. No effects were identified regarding rapid eye movement or non–rapid eye movement (NREM) stage 2 sleep, and NREM stage 1 was positively associated with GM thickness, mainly in the prefrontal cortical regions. Discussion There is a cross-sectional relationship between AD-related neurodegenerative patterns and the proportion of sleep spent in slow-wave sleep
    corecore