81 research outputs found

    New Preshower detector for DIRAC Experiment

    Full text link
    The Preshower (PSh) detector is a component of the DIRAC setup. It is designed to improve rejection efficiency of e-e+ pairs background in the {\pi}{\pi} and K{\pi} pair measurement. To increase the overall efficiency, a new two-layer structure scintillator Preshower detector has been realized in the region where the Nitrogen Cherenkov detector has been shortened to introduce new detectors. The new Preshower-Cherenkov combination ensures the electron rejection efficiency better than 99.9% in momentum region 1-7 GeV/c.Comment: to be published in NIM

    Nonperturbative QED Processes at ELI-NP

    Full text link
    The present paper analyses the current results and pursuits the main steps required for the design of SF-QED experiments at High-Power Laser System (HPLS) of ELI-NP in Magurele, Romania. After a brief analysis of the first experiment (E-144 SLAC), which confirmed the existence of non-linear QED interactions of the high energy electrons with the photons of a laser beam, we went on to present fundamental QED processes possible to be studied at ELI-NP in a multi-photon regime. The kinematics and characteristic parameters of the laser beam interacting with electrons were presented. In the preparation of an experiment at ELI-NP, the analysis of the kinematics and dynamics of the non-linear QED interaction processes with the physical vacuum are required. Initially, the linear QED processes and the corresponding Feynman diagrams that allow to determine the amplitude of these processes are reviewed. Based on these amplitudes, the cross sections of the processes can be obtained. For multi-photon interactions it is necessary to adapt the technique of Feynman diagrams from linear QED processes to the non-linear ones, by moving to the quantum field description with dressed Dirac-Volkov states, for particles in intense EM field. They then allow evaluation of the amplitude of the physical processes and ultimately the determination of the corresponding cross section. The SF-QED processes of multi-photon interactions with strong laser fields, can be done taking into account the characteristics of the existing facilities at ELI-NP in the context of the experimental production of electron-positron-pairs and of energetic gamma-rays. We show also some upcoming experiments similar to ours, in various stages of preparation.Comment: Presented at Bucharest University Meeting 2023 https://ssffb.fizica.unibuc.ro/SSFFB/Section.php?SectID=22

    First πK\pi K atom lifetime and πK\pi K scattering length measurements

    Get PDF
    The results of a search for hydrogen-like atoms consisting of πK±\pi^{\mp}K^{\pm} mesons are presented. Evidence for πK\pi K atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK\pi K pairs from their breakup in the same target (178±49178 \pm 49) and from Coulomb final state interaction (653±42653 \pm 42). Using these results the analysis yields a first value for the πK\pi K atom lifetime of τ=(2.51.8+3.0)\tau=(2.5_{-1.8}^{+3.0}) fs and a first model-independent measurement of the S-wave isospin-odd πK\pi K scattering length a0=13a1/2a3/2=(0.110.04+0.09)Mπ1\left|a_0^-\right|=\frac{1}{3}\left|a_{1/2}-a_{3/2}\right|= \left(0.11_{-0.04}^{+0.09} \right)M_{\pi}^{-1} (aIa_I for isospin II).Comment: 14 pages, 8 figure

    Determination of ππ\pi\pi scattering lengths from measurement of π+π\pi^+\pi^- atom lifetime

    Get PDF
    The DIRAC experiment at CERN has achieved a sizeable production of π+π\pi^+\pi^- atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave ππ\pi\pi scattering length difference a0a2=(.0.25330.0078+0.0080stat.0.0073+0.0078syst)Mπ+1|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\mathrm{syst})M_{\pi^+}^{-1} has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure

    DIRAC Experiment and Test of Low-Energy QCD

    Get PDF
    The low-energy QCD predictions to be tested by the DIRAC experiment are revised. The experimental method, the setup characteristics and capabilities, along with first experimental results are reported. Preliminary analysis shows good detector performance: alignment error via Λ\Lambda mass measurement mΛ=1115.6MeV/c2m_\Lambda = 1115.6 MeV/c^2 with σ=0.92MeV/c2\sigma = 0.92 MeV/c^2, pπp \pi^- relative momentum resolution σQ2.7MeV/c\sigma_Q \approx 2.7 MeV/c, and evidence for $\pi^

    Detection of π+π\pi^+\pi^-atoms with the DIRAC spectrometer at CERN

    Full text link
    The goal of the DIRAC experiment at CERN is to measure with high precision the lifetime of the π+π\pi^+\pi^- atom (A2πA_{2\pi}), which is of order 3×10153\times10^{-15} s, and thus to determine the s-wave ππ\pi\pi-scattering lengths difference a0a2|a_{0}-a_{2}|. A2πA_{2\pi} atoms are detected through the characteristic features of π+π\pi^+\pi^- pairs from the atom break-up (ionization) in the target. We report on a first high statistics atomic data sample obtained from p Ni interactions at 24 GeV/cc proton momentum and present the methods to separate the signal from the background.Comment: 19 pages, 12 figures, 1 tabl

    Evidence for πK\pi K-atoms with DIRAC

    Get PDF
    We present evidence for the first observation of electromagnetically bound π±K\pi^\pm K^\mp-pairs (πK\pi K-atoms) with the DIRAC experiment at the CERN-PS. The πK\pi K-atoms are produced by the 24 GeV/c proton beam in a thin Pt-target and the π±\pi^\pm and KK^\mp-mesons from the atom dissociation are analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173 ±\pm 54 πK\pi K-atoms. The mean life of πK\pi K-atoms is related to the s-wave πK\pi K-scattering lengths, the measurement of which is the goal of the experiment. From these first data we derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure
    corecore