4,849 research outputs found

    Renormalization and Essential Singularity

    Full text link
    In usual dimensional counting, momentum has dimension one. But a function f(x), when differentiated n times, does not always behave like one with its power smaller by n. This inevitable uncertainty may be essential in general theory of renormalization, including quantum gravity. As an example, we classify possible singularities of a potential for the Schr\"{o}dinger equation, assuming that the potential V has at least one C2C^2 class eigen function. The result crucially depends on the analytic property of the eigen function near its 0 point.Comment: 12 pages, no figures, PTPTeX with amsfonts. 2 pages added for detail

    Mathematics of random growing interfaces

    Full text link
    We establish a thermodynamic limit and Gaussian fluctuations for the height and surface width of the random interface formed by the deposition of particles on surfaces. The results hold for the standard ballistic deposition model as well as the surface relaxation model in the off-lattice setting. The results are proved with the aid of general limit theorems for stabilizing functionals of marked Poisson point processes.Comment: 12 page

    Modelling of Phase Separation in Alloys with Coherent Elastic Misfit

    Full text link
    Elastic interactions arising from a difference of lattice spacing between two coherent phases can have a strong influence on the phase separation (coarsening) of alloys. If the elastic moduli are different in the two phases, the elastic interactions may accelerate, slow down or even stop the phase separation process. If the material is elastically anisotropic, the precipitates can be shaped like plates or needles instead of spheres and can form regular precipitate superlattices. Tensions or compressions applied externally to the specimen may have a strong effect on the shapes and arrangement of the precipitates. In this paper, we review the main theoretical approaches that have been used to model these effects and we relate them to experimental observations. The theoretical approaches considered are (i) `macroscopic' models treating the two phases as elastic media separated by a sharp interface (ii) `mesoscopic' models in which the concentration varies continuously across the interface (iii) `microscopic' models which use the positions of individual atoms.Comment: 106 pages, in Latex, figures available upon request, e-mail addresses: [email protected], [email protected], [email protected], submitted to the Journal of Statistical Physic

    Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis

    Full text link
    We analyze the recently proposed mirror superposition experiment of Marshall, Simon, Penrose, and Bouwmeester, assuming that the mirror's dynamics contains a non-unitary term of the Lindblad type proportional to -[q,[q,\rho]], with q the position operator for the center of mass of the mirror, and \rho the statistical operator. We derive an exact formula for the fringe visibility for this system. We discuss the consequences of our result for tests of environmental decoherence and of collapse models. In particular, we find that with the conventional parameters for the CSL model of state vector collapse, maintenance of coherence is expected to within an accuracy of at least 1 part in 10^{8}. Increasing the apparatus coupling to environmental decoherence may lead to observable modifications of the fringe visibility, with time dependence given by our exact result.Comment: 4 pages, RevTeX. Substantial changes mad

    Off-Diagonal Long-Range Order: Meissner Effect and Flux Quantization

    Full text link
    There has been a proof by Sewell that the hypothesis of off-diagonal long-range order in the reduced density matrix ρ2\rho _2 implies the Meissner effect. We present in this note an elementary and straightforward proof that not only the Meissner effect but also the property of magnetic flux quantization follows from the hypothesis. It is explicitly shown that the two phenomena are closely related, and phase coherence is the origin for both.Comment: 11 pages, Latex fil

    Twistors, special relativity, conformal symmetry and minimal coupling - a review

    Full text link
    An approach to special relativistic dynamics using the language of spinors and twistors is presented. Exploiting the natural conformally invariant symplectic structure of the twistor space, a model is constructed which describes a relativistic massive, spinning and charged particle, minimally coupled to an external electro-magnetic field. On the two-twistor phase space the relativistic Hamiltonian dynamics is generated by a Poincare scalar function obtained from the classical limit (appropriately defined by us) of the second order, to an external electro-magnetic field minimally coupled, Dirac operator. In the so defined relativistic classical limit there are no Grassman variables. Besides, the arising equation that describes dynamics of the relativistic spin differs significantly from the so called Thomas Bergman Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything else in the papper) on page 23 delete

    Non-Abelian Tensor Multiplet Equations from Twistor Space

    Full text link
    We establish a Penrose-Ward transform yielding a bijection between holomorphic principal 2-bundles over a twistor space and non-Abelian self-dual tensor fields on six-dimensional flat space-time. Extending the twistor space to supertwistor space, we derive sets of manifestly N=(1,0) and N=(2,0) supersymmetric non-Abelian constraint equations containing the tensor multiplet. We also demonstrate how this construction leads to constraint equations for non-Abelian supersymmetric self-dual strings.Comment: v3: 23 pages, revised version published in Commun. Math. Phy

    Degeneracy measures for the algebraic classification of numerical spacetimes

    Full text link
    We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, Type I, but in many regions approximately, in some sense, Type D. To provide meaning to any claims of "approximate" Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will investigate such a measure, used recently to argue that certain binary black hole merger simulations ring down to the Kerr geometry, after hanging up for some time in Petrov Type II. In particular, we argue that this hangup in Petrov Type II is an artefact of the particular measure being used, and that a geometrically better-motivated measure shows a black hole merger produced by our group settling directly to Petrov Type D.Comment: 14 pages, 7 figures. Version 2 adds two references

    The frictional Schr\"odinger-Newton equation in models of wave function collapse

    Get PDF
    Replacing the Newtonian coupling G by -iG, the Schrodinger-Newton equation becomes ``frictional''. Instead of the reversible Schrodinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.Comment: 6pp LaTeX for J.Phys.Conf.Ser.+2 figs. Talk given at the Int. Workshop DICE2006 "Quantum Mechanics between Decoherence and Determinism: new aspects from particle physics to cosmology" Piombino, Sept 11-15, 200

    Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology

    Get PDF
    Local boundary conditions involving field strengths and the normal to the boundary, originally studied in anti-de Sitter space-time, have been recently considered in one-loop quantum cosmology. This paper derives the conditions under which spin-raising operators preserve these local boundary conditions on a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component spinor analysis of the four potentials of the totally symmetric and independent field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in a flat Euclidean background, for which the gauge freedom in the choice of the potentials remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in circulating the file, due to technical problems now fixe
    corecore