693 research outputs found

    Understanding the Bare Breech Phenotype

    Get PDF
    The document attached has been archived with permission from the publisher/copyright holder

    Simulation of the Scattered EM Field of a Rotating Conducting Cylinder Using Static Data

    Get PDF
    The effect of the rotation of a very good conducting cylinder on the backscattered field will be investigated where the incident wave is considered as a plane wave in both polarizations (E-wave and H-wave). Previous work has explained that rotation or vibration of the object may induce phase changes of the scattered signal. Modulation during rotation or vibration is referred to as micro-Doppler effect. Also, the effect of the rotation of a conducting cylinder was investigated by many researchers in the past using the Galilean transformation. These analyses conclude that the effect of rotation does not exist in the case of a perfectly conducting cylinder in both polarizations. In this work, the Franklin transformation is used instead of the Galilean transformation to analyze scattering of both types of electromagnetic waves (H-wave and E-wave) by rotating a very good circular conducting cylinder. This work shows that the scattered field is affected by the rotation of a very good conducting cylinder, especially in the case of H-wave (TE-mode). Finally, the model that will be presented is used to simulate rotation using static backscattered field data of an arbitrary object

    Responses to supplementation by dairy cows given low pasture allowances in different seasons 2. Milk production

    Get PDF
    Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or with supplement at 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. The two supplements given in both years were rolled maize grain (MG) and a mixture of foods formulated to nutritionally balance the diet (BR). In experiment 2, another treatment, of a generous pasture allowance (60 to 75 kg DM per cow per day) (AP), was imposed on an additional group of early lactation cows during each season. Direct milk solids (MS) (milk fat plus milk protein) responses in experiment 1 to MG were 169, 279, 195 and 251 g MS per cow per day in spring, summer, autumn and winter, respectively, while those to BR were 107, 250, 192, 289 g MS per cow per day. In experiment 2, however, milk solids responses to both supplements during spring were slightly below the control treatment, with values similar to those in experiment 1 in summer and autumn for cows on the BR but not the MG supplement. Milk solids responses to supplementary foods were largest during seasons of the year when the quantity and quality of pasture on offer resulted in the lowest milk solids yield from unsupplemented cows. When carry-over effects of feeding MG and BR on milk solids production were detected, they were only about half the magnitude of the direct effects. Serum urea concentrations were higher in control cows than those offered MG with a similar effect for BR in all but summer in experiment 1, while serum glucose concentrations were highest in winter and lowest in summer. The most important factor influencing milk solids responses was the relative food deficit (RFD) represented by the decline in milk solids yield of the respective control groups after,changing from a generous pasture allowance to restricted allowance when the feeding treatments were imposed. Total milk solids responses (direct and carry-over) to supplements were greatest when severe food restrictions, relative to the cows' current food demand, resulted in large reductions in milk solids yield of the control groups. The RFD was the best predictor of milk solids response to supplementary foods. Therefore, it is likely that cows are most responsive to supplementary foods during or immediately after the imposition of a severe food restriction

    Responses to supplementation by dairy cows given low pasture allowances in different seasons 1. Pasture intake and substitution

    Get PDF
    Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or supplemented with 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. Two different supplements were offered, namely, rolled maize grain (MG) and a mixture of foods (BR) formulated to nutritionally balance the diet. In experiment 2, a fourth treatment consisting solely of a generous pasture allowance (60 to 75 kg DM per cow per day, AP) was introduced. Offering MG and BR increased DM intake (DMI). At the restricted pasture allowance, increasing total ME allowance (MEA) by offering supplementary foods increased ME intake (MEI) by 0.68 (s.e. 0.047) MJ per extra MJ ME offered. This highly significant (P < 0.001) linear relationship was consistent across seasons, and did not diminish at higher MEA. In experiment 2, cows in early lactation had lower substitution rates than mid and late lactation cows irrespective of season. Substitution rate was higher when higher pasture allowance or quality of pasture on offer enabled the unsupplemented cows to achieve higher DMI from pasture than at other times of the year. These results suggest that one of the key factors determining the intake response to supplementary foods is pasture allowance. Within spring calving dairying systems, the largest increases in total DMI per kg of supplement offered is likely when offering supplements to early lactation cows grazing restricted allowances of high quality pasture

    Functional Analysis of the Chemokine Receptor CCR3 on Airway Epithelial Cells

    Get PDF
    The function of chemokine receptors on structural cells is only partially known. We previously reported the expression of a functional CCR3 receptor on airway epithelial cells (EC). We speculated that CCR3 might drive wound repair and expression of inflammatory genes in epithelium. The human airway EC lines BEAS-2B, 16-HBE, and primary bronchial EC were used to test the effect of in vitro challenge with the CCR3 ligands CCL11/eotaxin, CCL24/eotaxin-2, or CCL26/eotaxin-3 on 1) wound repair, using an established wound model; 2) cell proliferation and chemotaxis, using specific fluorometric assays; and 3) gene expression, using pathway-specific arrays for inflammatory and profibrotic cytokines, chemokines, and chemokine receptor genes. Agonist specificity was tested by cell pretreatment with an AstraZeneca CCR3 antagonist (10(-8) - 10(-6) M). CCL24 challenge significantly accelerated epithelial wound closure, with similar effects exerted by CCL11 and CCL26. This effect was time dependent, submaximal at 1 nM, and comparable in potency to epidermal growth factor. CCL24 induced a concentration-dependent increase in EC proliferation and chemotaxis, with significant effects observed at 10 nM. The AstraZeneca compound selectively inhibited these CCL24-mediated responses. CCL11 induced the up-regulation of several profibrogenic molecules such as fibroblast growth factor 1 and 5 and of several CC and CXC chemokines. Epithelial immunostaining for CCR3 was stronger in bronchial biopsies of asthmatics displaying marked inflammatory changes than in nondiseased samples. Epithelial CCR3 participates in key functions for wound repair, amplifies the expression of profibrogenic and chemokine transcripts, and appears up-regulated in inflamed asthmatic airways

    Acute Effects of 3,4-Methylenedioxymethamphetamine and Methylphenidate on Circulating Steroid Levels in Healthy Subjects

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate are widely used psychoactive substances. MDMA primarily enhances serotonergic neurotransmission, and methylphenidate increases dopamine but has no serotonergic effects. Both drugs also increase norepinephrine, resulting in sympathomimetic properties. Here we studied the effects of MDMA and methylphenidate on 24-h plasma steroid profiles. Sixteen healthy subjects (eight men, eight women) were treated with single doses of MDMA (125 mg), methylphenidate (60 mg), MDMA + methylphenidate, and placebo on four separate days using a cross-over study design. Cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycorticosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), androstendione, and testosterone were repeatedly measured up to 24-h using liquid-chromatography tandem mass-spectroscopy. MDMA significantly increased the plasma concentrations of cortisol, corticosterone, 11-dehydrocorticosterone, and 11-deoxycorticosterone and also tended to moderately increase aldosterone levels compared with placebo. MDMA also increased the sum of cortisol + cortisone and the cortisol/cortisone ratio, consistent with an increase in glucocorticoid production. MDMA did not alter the levels of cortisone, DHEA, DHEAS, androstendione, or testosterone. Methylphenidate did not affect any of the steroid concentrations, and it did not change the effects of MDMA on circulating steroids. In summary, the serotonin releaser MDMA has acute effects on circulating steroids. These effects are not observed after stimulation of the dopamine and norepinephrine systems with methylphenidate. The present findings support the view that serotonin rather than dopamine and norepinephrine mediates the acute pharmacologically-induced stimulation of the hypothalamic-pituitary-adrenal axis in the absence of other stressors. © 2014 S. Karger AG, Basel
    • …
    corecore