3,749 research outputs found

    Finite volume effects in a quenched lattice-QCD quark propagator

    Full text link
    We investigate finite volume effects in the pattern of chiral symmetry breaking. To this end we employ a formulation of the Schwinger-Dyson equations on a torus which reproduces results from the corresponding lattice simulations of staggered quarks and from the overlap action. Studying the volume dependence of the quark propagator we find quantitative differences with the infinite volume result at small momenta and small quark masses. We estimate the minimal box length L below which chiral perturbation theory cannot be applied to be L \simeq 1.6 fm. In the infinite volume limit we find a chiral condensate of ||_{\bar{MS}}^{2 GeV} = (253 \pm 5.0 MeV)^3, an up/down quark mass of m_{\bar{MS}}^{2 GeV} = 4.1 \pm 0.3 MeV and a pion decay constant which is only ten percent smaller than the experimental value.Comment: 19 pages, 8 figures. v2: minor clarifications added, version published in PR

    Quark Condensates: Flavour Dependence

    Get PDF
    We determine the q-bar q condensate for quark masses from zero up to that of the strange quark within a phenomenologically successful modelling of continuum QCD by solving the quark Schwinger-Dyson equation. The existence of multiple solutions to this equation is the key to an accurate and reliable extraction of this condensate using the operator product expansion. We explain why alternative definitions fail to give the physical condensate.Comment: 9 pages, 7 figures, uses appolb.cls, LaTeX. Talk presented by R. Williams at the EURIDICE Final Meeting, August 24-27th, 2006, Kazimierz, Polan

    Numerical cancellation of photon quadratic divergence in the study of the Schwinger-Dyson equations in Strong Coupling QED

    Get PDF
    The behaviour of the photon renormalization function in strong coupling QED has been recently studied by Kondo, Mino and Nakatani. We find that the sharp decrease in its behaviour at intermediate photon momenta is an artefact of the method used to remove the quadratic divergence in the vacuum polarization. We discuss how this can be avoided in numerical studies of the Schwinger-Dyson equations.Comment: 9 pages, Latex, 5 figures. Complete postscript file available from: ftp://cpt1.dur.ac.uk/pub/preprints/dtp94/dtp94100/dtp94100.p

    Aspects of quark mass generation on a torus

    Get PDF
    In this talk we report on recent results for the quark propagator on a compact manifold. The corresponding Dyson-Schwinger equations on a torus are solved on volumes similar to the ones used in lattice calculations. The quark-gluon interaction is fixed such that the lattice results are reproduced. We discuss both the effects in the infinite volume/continuum limit as well as effects when the volume is small.Comment: 3 pages, 3 figures; talk given by CF at QNP06, Madrid, June 200

    Molecular orientational dynamics of the endohedral fullerene Sc3_{3}N@C80_{80} as probed by 13^{13}C and 45^{45}Sc NMR

    Get PDF
    We measure 13C and 45Sc NMR lineshapes and spin-lattice relaxation times (T1) to probe the orientational dynamics of the endohedral metallofullerene Sc3N@C80. The measurements show an activated behavior for molecular reorientations over the full temperature range with a similar behavior for the temperature dependence of the 13C and 45Sc data. Combined with spectral data from Magic Angle Spinning (MAS) NMR, the measurements can be interpreted to mean the motion of the encapsulated Sc3N molecule is independent of that of the C80 cage, although this requires the similar temperature dependence of the 13C and 45Sc spin-lattice relaxation times to be coincidental. For the Sc3N to be fixed to the C80 cage, one must overcome the symmetry breaking effect this has on the Sc3N@C80 system since this would result in more than the observed two 13C lines.Comment: 6 pages, 5 figure

    Human activity was a major driver of the mid-Holocene vegetation change in southern Cumbria: Implications for the elm decline in the British Isles

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The dramatic decline in elm (Ulmus) across a large swathe of north-west Europe in the mid-Holocene has been ascribed to a number of possible factors, including climate change, human activity and/or pathogens. A major limitation for identifying the underlying cause(s) has been the limited number of high-resolution records with robust geochronological frameworks. Here, we report a multiproxy study of an upland (Blea Tarn) and lowland (Urswick Tarn) landscape in southern Cumbria (British Isles) to reconstruct vegetation change across the elm decline in an area with a rich and well-dated archaeological record to disentangle different possible controls. Here we find a two-stage decline in Ulmus taking place between 6350–6150 and 6050–5850 cal a BP, with the second phase coinciding with an intensification of human activity. The scale of the decline and associated human impact is more abrupt in the upland landscape. We consider it likely that a combination of human impact and disease drove the Ulmus decline within southern Cumbria.This work was funded by a studentship for MJG from the University of Exeter and Sir John Fisher Foundation. Additional funding for 14C dating was from the Cumberland and Westmorland Antiquarian and Archaeological Society (Clare Fell Bursary to MJG), and the Australian Research Council (FL100100195)
    corecore