177 research outputs found

    Anxiety and depression in rheumatologic diseases: the relevance of diagnosis and management

    Get PDF
    The high prevalence of emotional disorders (anxiety, chronic stress, mood depression) in patients with pain during rheumatologic diseases (particularly fibromyalgia) is closely related to the common pathogenic mechanisms concerning emotions and pain. Therefore a prompt identification of any psychic component of pain, also by means of specific tools, is a must, because it can require an adjustment of the therapeutic approach by combining both an analgesic treatment and antidepressants and/or psychotherapeutic strategies

    Full-beam performances of a PET detector with synchrotron therapeutic proton beams

    Get PDF
    Treatment quality assessment is a crucial feature for both present and nextgeneration ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by β+;-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in submillimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data

    Analysis methods for in-beam PET images in proton therapy treatment verification: a comparison based on Monte Carlo simulations

    Full text link
    Background and purpose: In-beam Positron Emission Tomography (PET) is one of the modalities that can be used for in-vivo non-invasive treatment monitoring in proton therapy. PET distributions obtained during various treatment sessions can be compared in order to identify regions that have anatomical changes. The purpose of this work is to test and compare different analysis methods in the context of inter-fractional PET image comparison for proton treatment verification. Methods: For our study we used the FLUKA Monte Carlo code and artificially generated CT scans to simulate in-beam PET distributions at different stages during proton therapy treatment. We compared the Beam-Eye-View method, the Most-Likely-Shift method, the Voxel-Based-Morphology method and the gamma evaluation method to compare PET images at the start of treatment, and after a few weeks of treatment. The results were compared to the CT scan. Results and conclusions: Three-dimensional methods like VBM and gamma are preferred above two-dimensional methods like MLS and BEV if much statistics is available, since the these methods allow to identify the regions with anomalous activity. The VBM approach has as disadvantage that a larger number of MC simulations is needed. The gamma analysis has the disadvantage that no clinical indication exist on tolerance criteria. In terms of calculation time, the BEV and MLS method are preferred. We recommend to use the four methods together, in order to best identify the location and cause of the activity changes.Comment: 9 pages, 5 figure

    Inter-fractional monitoring of 12 C ions treatments: results from a clinical trial at the CNAO facility

    Get PDF
    The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient. The DP capability to detect inter-fractional changes is demonstrated by comparing the obtained fragment emission maps in different fractions of the treatments enrolled in the first ever clinical trial of such a monitoring system, performed at CNAO. The case of a CNAO patient that underwent a significant morphological change is presented in detail, focusing on the implications that can be drawn for the achievable inter-fractional monitoring DP sensitivity in real clinical conditions. The results have been cross-checked against a simulation study

    Elemental fragmentation cross sections for a O-16 beam of 400 MeV/u kinetic energy interacting with a graphite target using the FOOT Delta E-TOF detectors

    Get PDF
    The study of nuclear fragmentation plays a central role in many important applications: from the study of Particle Therapy (PT) up to radiation protection for space (RPS) missions and the design of shielding for nuclear reactors. The FragmentatiOn Of Target (FOOT) collaboration aims to study the nuclear reactions that describe the interactions with matter of different light ions (like H-1, He-4, C-12, O-16) of interest for such applications, performing double differential fragmentation cross section measurements in the energy range of interest for PT and RPS. In this manuscript, we present the analysis of the data collected in the interactions of an oxygen ion beam of 400 MeV/u with a graphite target using a partial FOOT setup, at the GSI Helmholtz Center for Heavy Ion Research facility in Darmstadt. During the data taking the magnets, the silicon trackers and the calorimeter foreseen in the final FOOT setup were not yet available, and hence precise measurements of the fragments kinetic energy, momentum and mass were not possible. However, using the FOOT scintillator detectors for the time of flight (TOF) and energy loss (Delta E) measurements together with a drift chamber, used as beam monitor, it was possible to measure the elemental fragmentation cross sections. The reduced detector set-up and the limited available statistics allowed anyway to obtain relevant results, providing statistically significant measurements of cross sections eagerly needed for PT and RPS applications. Whenever possible the obtained results have been compared with existing measurements helping in discriminating between conflicting results in the literature and demonstrating at the same time the proper functioning of the FOOT Delta E-TOF system. Finally, the obtained fragmentation cross sections are compared to the Monte Carlo predictions obtained with the FLUKA software
    corecore