80 research outputs found
The Growth and Survival of Early Instars of \u3ci\u3eBellura Obliqua\u3c/i\u3e (Lepidoptera: Noctuidae) on \u3ci\u3eTypha Latifolia\u3c/i\u3e and \u3ci\u3eTypha Angustifolia\u3c/i\u3e
Larvae of the noctuid moth Bellura obliqua are frequently encountered on Typha latifolia, but less commonly on Typha angustifolia. Experiments were conducted to compare the growth and survivorship of early B. obliqua instars on the two species of cattail. In short-term growth chamber experiments there were no significant differences in the survivorship, relative growth rate (RGR), relative consumption rate (RCR), or the efficiency of conversion of ingested food (ECI) between first-instar larvae reared on leaves of the two species. Third-instar larvae fed stems, however, had a greater RGR and higher ECI when reared on T. lalifolia. Differences in growth are apparently not related to differences in hostplant nitrogen or acid-detergent fiber content. In a long term greenhouse experiment, using transplanted cattails, larvae reared on T. latifolia grew somewhat larger and had a significantly higher survival rate than those reared on T. angustifolia. Host plant structure is postulated to influence larval survivorship. Typha is under consideration for use as a bio-energy crop and planting T. angustifolia may help to reduce infestations in cultivated stands
Measurement and analysis of a small nozzle plume in vacuum
Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area
Pressure measurements in a low-density nozzle plume for code verification
Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations
Experimental and analytical comparison of flowfields in a 110 N (25 lbf) H2/O2 rocket
A gaseous hydrogen/gaseous oxygen 110 N (25 lbf) rocket was examined through the RPLUS code using the full Navier-Stokes equations with finite rate chemistry. Performance tests were conducted on the rocket in an altitude test facility. Preliminary parametric analyses were performed for a range of mixture ratios and fuel film cooling pcts. It is shown that the computed values of specific impulse and characteristic exhaust velocity follow the trend of the experimental data. Specific impulse computed by the code is lower than the comparable test values by about two to three percent. The computed characteristic exhaust velocity values are lower than the comparable test values by three to four pct. Thrust coefficients computed by the code are found to be within two pct. of the measured values. It is concluded that the discrepancy between computed and experimental performance values could not be attributed to experimental uncertainty
Molecular gas dynamics applied to low-thrust propulsion
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects
Recommended from our members
Optimized, diode pumped, Nd:glass, prototype regenerative amplifier for the National Ignition Facility (NIF)
The National Ignition Facility (NIF) will house a 2 MJ Nd:glass laser system to be used for a broad range of inertial confinement fusion experiments. This record high energy laser output will be initiated by a single low energy, fiber -based master oscillator which will be appropriately shaped in time and frequency prior to being split into 48 beams for intermediate amplification. These 48 intermediate energy beams will feed the 192 main amplifier chains. We report on the baseline design and test results for an amplifier subsystem in the intermediate amplifiers. The subsystem is based on a diode pumped, Nd:glass regenerative amplifier. The amplifier is comprised fo a linear, folded, TEM{sub 00}, 4.5m long cavity and represents the highest gain (approximately 10{sup 7}) component in the NIF laser system. Two fundamentally important requirements for this amplifier include output energy of 20 mJ and square pulse distortion of less than 1.45. With a single 48 bar 4.5kW peak power diode array and lens duct assembly we pump a 5 mm diameter X 50 mm long Nd-doped, phosphate glass rod, and amplify the mode matched, temporally shaped (approximately 20ns in duration)oscillator seed pulse to 25 mJof output energy with a very acceptable square pulse distortion of 1.44. This most recent design of the regenerative amplifier has increased the performance and reduced the cost, enabling it to become a solid baseline for the NIF laser system
Recommended from our members
Amplitude and phase modulation with waveguide optics
We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high- speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz
Endothelial Progenitor Cells Enhance Islet Engraftment, Influence b-Cell Function, and Modulate Islet Connexin 36 Expression
This article has been made available by the publisher under a Creative Commons Attribution Non-Commercial (CC BY NC) license. https://www.cognizantcommunication.com/general-subscription-policies/open-access-policy Accessed 10/2/15The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study
Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?
This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892
- …