70 research outputs found

    YOLOv8-ACU: improved YOLOv8-pose for facial acupoint detection

    Get PDF
    IntroductionAcupoint localization is integral to Traditional Chinese Medicine (TCM) acupuncture diagnosis and treatment. Employing intelligent detection models for recognizing facial acupoints can substantially enhance localization accuracy.MethodsThis study introduces an advancement in the YOLOv8-pose keypoint detection algorithm, tailored for facial acupoints, and named YOLOv8-ACU. This model enhances acupoint feature extraction by integrating ECA attention, replaces the original neck module with a lighter Slim-neck module, and improves the loss function for GIoU.ResultsThe YOLOv8-ACU model achieves impressive accuracy, with an [email protected] of 97.5% and an [email protected]–0.95 of 76.9% on our self-constructed datasets. It also marks a reduction in model parameters by 0.44M, model size by 0.82 MB, and GFLOPs by 9.3%.DiscussionWith its enhanced recognition accuracy and efficiency, along with good generalization ability, YOLOv8-ACU provides significant reference value for facial acupoint localization and detection. This is particularly beneficial for Chinese medicine practitioners engaged in facial acupoint research and intelligent detection

    The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies

    Get PDF
    The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops

    Boosting with an aerosolized Ad5-nCoV elicited robust immune responses in inactivated COVID-19 vaccines recipients

    Get PDF
    IntroductionThe SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant and exhibits immune escape to current COVID-19 vaccines, the further boosting strategies are required.MethodsWe have conducted a non-randomized, open-label and parallel-controlled phase 4 trial to evaluate the magnitude and longevity of immune responses to booster vaccination with intramuscular adenovirus vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines. ResultsThe aerosolized Ad5-nCoV induced the most robust and long-lasting neutralizing activity against Omicron variant and IFNg T-cell response among all the boosters, with a distinct mucosal immune response. SARS-CoV-2-specific mucosal IgA response was substantially generated in subjects boosted with the aerosolized Ad5-nCoV at day 14 post-vaccination. At month 6, participants boosted with the aerosolized Ad5-nCoV had remarkably higher median titer and seroconversion of the Omicron BA.4/5-specific neutralizing antibody than those who received other boosters. DiscussionOur findings suggest that aerosolized Ad5-nCoV may provide an efficient alternative in response to the spread of the Omicron BA.4/5 variant.Clinical trial registrationhttps://www.chictr.org.cn/showproj.html?proj=152729, identifier ChiCTR2200057278

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process

    No full text
    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 degrees C and 850 degrees C, the heating value of fuel gas can reach 1200 kcal/Nm3, and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process. (C) 2016 Published by Elsevier Ltd.</p

    Microstructure refinement and enhanced mechanical properties in rapid-quenched MnCrFeCoNi high-entropy alloy

    No full text
    High-entropy alloys (HEAs) have gained significant attentions in recent years, due to their unique properties derived from the combination of multiple elements in equimolar or near-equimolar ratios. The mechanical properties of HEAs are influenced by microstructural characteristics. In this study, MnCrFeCoNi HEA ribbons were produced using a technique called melt spinning, for which the wheel speed was adjusted to control the undercooling levels. The rapid solidification process under undercooling condition resulted in refined grain sizes to micrometers in the ribbons. One notable feature was the appearance of twin boundaries, which especially accounted for approximately 7.36 % of the microstructure for the ribbons produced at a wheel speed of 10 m/s. For the ribbons with thickness of micrometer scale, the mechanical properties (ultimate tensile strength up to 2.5 GPa and hardness up to 300 MPa) were analyzed by microstructure (grain boundaries and homogeneity) and exterior factors (e.g. thickness). Overall, this study provides a new approach for tailoring the microstructures and mechanical properties of HEAs via melt spinning technique. The HEA ribbons present a novel form that could potentially broaden the scope of applications for these materials
    • …
    corecore