2 research outputs found

    Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    No full text
    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving xanthophyll–chlorophyll (Xan–Chl) and Chl–Chl interactions. We present evidence of an experimental artifact that may explain the discrepancies: strong laser pulses lead to the formation of a novel electronic species in the major plant light-harvesting complex (LHCII). This species evolves from a high excited state of Chl <i>a</i> and is absent with weak laser pulses. It resembles an excitonically coupled heterodimer of Chl <i>a</i> and lutein (or other Xans at site L1) and acts as a de-excitation channel. Laser powers, and consequently amounts of artifact, vary strongly between NPQ studies, thereby explaining contradicting spectral signatures attributed to NPQ. Our results offer pathways toward unveiling NPQ mechanisms and highlight the necessity of careful attention to laser-induced artifacts

    Rapid reconstitution of ubiquitinated nucleosome using a non-denatured histone octamer ubiquitylation approach.

    No full text
    BACKGROUND: Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS: In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS: Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology
    corecore