175 research outputs found

    HDIdx: High-Dimensional Indexing for Efficient Approximate Nearest Neighbor Search

    Get PDF
    Fast Nearest Neighbor (NN) search is a fundamental challenge in large-scale data processing and analytics, particularly for analyzing multimedia contents which are often of high dimensionality. Instead of using exact NN search, extensive research efforts have been focusing on approximate NN search algorithms. In this work, we present "HDIdx", an efficient high-dimensional indexing library for fast approximate NN search, which is open-source and written in Python. It offers a family of state-of-the-art algorithms that convert input high-dimensional vectors into compact binary codes, making them very efficient and scalable for NN search with very low space complexity

    LEAP: Efficient and Automated Test Method for NLP Software

    Full text link
    The widespread adoption of DNNs in NLP software has highlighted the need for robustness. Researchers proposed various automatic testing techniques for adversarial test cases. However, existing methods suffer from two limitations: weak error-discovering capabilities, with success rates ranging from 0% to 24.6% for BERT-based NLP software, and time inefficiency, taking 177.8s to 205.28s per test case, making them challenging for time-constrained scenarios. To address these issues, this paper proposes LEAP, an automated test method that uses LEvy flight-based Adaptive Particle swarm optimization integrated with textual features to generate adversarial test cases. Specifically, we adopt Levy flight for population initialization to increase the diversity of generated test cases. We also design an inertial weight adaptive update operator to improve the efficiency of LEAP's global optimization of high-dimensional text examples and a mutation operator based on the greedy strategy to reduce the search time. We conducted a series of experiments to validate LEAP's ability to test NLP software and found that the average success rate of LEAP in generating adversarial test cases is 79.1%, which is 6.1% higher than the next best approach (PSOattack). While ensuring high success rates, LEAP significantly reduces time overhead by up to 147.6s compared to other heuristic-based methods. Additionally, the experimental results demonstrate that LEAP can generate more transferable test cases and significantly enhance the robustness of DNN-based systems.Comment: Accepted at ASE 202

    A Wireless Covert Channel Based on Constellation Shaping Modulation

    Get PDF
    Wireless covert channel is an emerging covert communication technique which conceals the very existence of secret information in wireless signal including GSM, CDMA, and LTE. The secret message bits are always modulated into artificial noise superposed with cover signal, which is then demodulated with the shared codebook at the receiver. In this paper, we first extend the traditional KS test and regularity test in covert timing channel detection into wireless covert channel, which can be used to reveal the very existence of secret data in wireless covert channel from the aspect of multiorder statistics. In order to improve the undetectability, a wireless covert channel for OFDM-based communication system based on constellation shaping modulation is proposed, which generates additional constellation points around the standard points in normal constellations. The carrier signal is then modulated with the dirty constellation and the secret message bits are represented by the selection mode of the additional constellation points; shaping modulation is employed to keep the distribution of constellation errors unchanged. Experimental results show that the proposed wireless covert channel scheme can resist various statistical detections. The communication reliability under typical interference is also proved

    Explicit original gas in place determination of naturally fractured reservoirs in gas well rate decline analysis

    Get PDF
    Naturally fractured gas reservoirs have contributed significantly to global gas reserves and production. The classical gas-well decline analysis relies largely on Arps’ empirical decline models, or modern production decline analysis associating with pseudo-variables. The explicit original gas in place determination methodology is extended from homogeneous reservoir to naturally fractured reservoir under constant or variable bottom-hole pressure conditions in gas-well rate decline analysis. Then, the relationship between gas flow rate and average reservoir pseudo-pressure in the boundary-dominated flow period is re-derived. This formula is in the same format with the equation for homogeneous reservoir by due to the introduction of a new productivity index parameter that captures the inter-porosity flow between fracture and matrix in the natural fractured reservoir. The proposed step-by-step procedures are applied here, which enable the estimation of decline exponent and the explicit and straightforward determination of the original gas in place without any iterative calculations. Four simulated cases prove that our methodology can be successfully used in heterogeneous naturally fractured reservoirs with irregular boundary under constant or variable bottom-hole pressure conditions.Document Type: Original articleCited as: Wang, Y., Wang, J., Zhao, W., Ji, P., Cheng, S., Yu, H. Explicit original gas in place determination of naturally fractured reservoirs in gas well rate decline analysis. Advances in Geo-Energy Research, 2023, 9(2): 117-124. https://doi.org/10.46690/ager.2023.08.0
    • …
    corecore