906 research outputs found

    DoubleAUG: Single-domain Generalized Object Detector in Urban via Color Perturbation and Dual-style Memory

    Full text link
    Object detection in urban scenarios is crucial for autonomous driving in intelligent traffic systems. However, unlike conventional object detection tasks, urban-scene images vary greatly in style. For example, images taken on sunny days differ significantly from those taken on rainy days. Therefore, models trained on sunny day images may not generalize well to rainy day images. In this paper, we aim to solve the single-domain generalizable object detection task in urban scenarios, meaning that a model trained on images from one weather condition should be able to perform well on images from any other weather conditions. To address this challenge, we propose a novel Double AUGmentation (DoubleAUG) method that includes image- and feature-level augmentation schemes. In the image-level augmentation, we consider the variation in color information across different weather conditions and propose a Color Perturbation (CP) method that randomly exchanges the RGB channels to generate various images. In the feature-level augmentation, we propose to utilize a Dual-Style Memory (DSM) to explore the diverse style information on the entire dataset, further enhancing the model's generalization capability. Extensive experiments demonstrate that our proposed method outperforms state-of-the-art methods. Furthermore, ablation studies confirm the effectiveness of each module in our proposed method. Moreover, our method is plug-and-play and can be integrated into existing methods to further improve model performance.Comment: Accepted by ACM Transactions on Multimedia Computing, Communications, and Application

    Effect of ozone gas processing on physical and chemical properties of wheat proteins

    Get PDF
    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin.Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment with ozone gas, with 5 g/h produced as a function of time (0, 30, and 60 min) in the study. To check whether the process of ozonation promoted changes in the quality of gluten proteins, sulfhydryl groups (SH), differential scanning calorimetry (DSC), secondary structure, SDS-PAGE, and rheology analyses were performed.Results: Sulfhydryl group contents of wheat proteins ranged from 1.1 to 7.12 μmol/g. Sulfhydryl group content for all ozonated proteins was significantly lower than that of the control samples. Gluten proteins showed reduced SDS-PAGE band intensities of both high (HMW) gluten and glutenin subunits with increasing ozone gas treatment. The denaturation temperatures (Td) of ozonated gluten proteins were higher (99.80–106.79 °C) and the enthalpies of the ozonated gluten proteins were lower than those of the control samples. The storage moduli (G') and loss moduli (G”) of gluten and glutenin tended to increase from 7.84 to 10.20 KPa and 43.19 to 48.28 KPa, and from 3.33 to 4.06 KPa and 20.74 to 22.56 KPa, respectively, as ozone exposure increased from 0 to 30 min.Conclusion: Ozone gas can oxidize wheat proteins. Exposing wheat proteins to ozone gas for an extended time (60 min) deteriorated wheat protein quality.Keywords: Ozone treatment, Gluten proteins, Chemical changes, Rheological studies, CD spectroscopy, Thermal propertie

    Development and validation of an ELISA using a protein encoded by ORF2 antigenic domain of porcine circovirus type 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The capsid protein (ORF2) is a major structural protein of porcine circovirus type 2 (PCV2). A simple and reliable diagnostic method based on ORF2 protein immunoreactivity would serve as a valuable diagnostic method for detecting serum antibodies to PCV2 and monitoring PCV infection. Here, we reported an indirect enzyme-linked immunosorbent assay (I-ELISA) by using an antigenic domain (113-147AA) of ORF2-encoded antigen, expressed in <it>E. coli</it>, for diagnosis of PCV infection.</p> <p>Results</p> <p>The ELISA was performed on 288 serum samples collected from different porcine herds and compared with an indirect immunofluorescent assay (IFA). In total, 262 of 288 samples were positive as indicated by both I-ELISA and IFA. The specificity and sensitivity of I-ELISA were 87.7% and 93.57%.</p> <p>Conclusions</p> <p>This ELISA is suitable for detection and discrimination of PCV2 infection in both SPF and farm antisera.</p

    Development of 15kA/cm2^2 Fabrication Process for Superconducting Integrated Digital Circuits

    Full text link
    A new fabrication process for superconducting integrated digital circuits is reported. We have developed the "SIMIT Nb04" fabrication technique for superconducting integrated circuits with Nb-based Josephson junctions based on the validated "SIMIT Nb03" process and Chemical Mechanical Planarization (CMP) technology. Seven Nb superconducting layers and one Mo resistor layer are included in the "SIMIT Nb04" process with 19 mask levels. The device structure is composed of active layers including junctions at the bottom, two passive transmission line (PTL) layers in the middle and a DC power layer at the top. The circuit fabrication started with the fabrication of Mo resistors with a target sheet resistance Rsh of 3 Ω\Omega, followed by the deposition of Nb/Al-AlOx_x/Nb trilayer Josephson-junction with a target critical current density Jc at 15 kA/cm2^2. To increase the Al-AlOx_x barrier layer etching's repeatability, an additional barrier protection layer was applied. To accomplish high-quality planarization, we created a planarization procedure coupled with dummy filling. To assess the process dependability and controllability, a set of process control monitors (PCMs) for monitoring fabrication and design parameters was designed and monitored. The successful manufacturing and testing of a few small-scale circuits, like our standard library cells, further attests to the viability of our fabrication process for superconducting integrated circuits

    Bis(4-pyridylmeth­yl) hexa­nedioate

    Get PDF
    The asymmetric unit of the title compound, C18H20N2O4, contains one half-mol­ecule. The mol­ecule lies on an inversion centre and is roughly planar, the chains between the two pyridine rings being only slightly twisted, with torsion angles ranging from 170.9 (1) to 177.2 (1)°. Weak C—H⋯O hydrogen bonds result in the formation of a three-dimensional network

    Increased Methylation of the MOR Gene Proximal Promoter in Primary Sensory Neurons Plays a Crucial Role in the Decreased Analgesic Effect of Opioids in Neuropathic Pain

    Get PDF
    BACKGROUND: The analgesic potency of opioids is reduced in neuropathic pain. However, the molecular mechanism is not well understood. RESULTS: The present study demonstrated that increased methylation of the Mu opioid receptor (MOR) gene proximal promoter (PP) in dorsal root ganglion (DRG) plays a crucial role in the decreased morphine analgesia. Subcutaneous (s.c.), intrathecal (i.t.) and intraplantar (i.pl.), not intracerebroventricular (i.c.v.) injection of morphine, the potency of morphine analgesia was significantly reduced in nerve-injured mice compared with control sham-operated mice. After peripheral nerve injury, we observed a decreased expression of MOR protein and mRNA, accompanied by an increased methylation status of MOR gene PP, in DRG. However, peripheral nerve injury could not induce a decreased expression of MOR mRNA in the spinal cord. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC), inhibited the increased methylation of MOR gene PP and prevented the decreased expression of MOR in DRG, thereby improved systemic, spinal and periphery morphine analgesia. CONCLUSIONS: Altogether, our results demonstrate that increased methylation of the MOR gene PP in DRG is required for the decreased morphine analgesia in neuropathic pain

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    ANALYSIS OF FACTORS CAUSING WATER DAMAGE TO LOESS DOUBLE-ARCHED TUNNEL BASED ON TFN-AHP

    Get PDF
    In order to analysis the factors causing water damage to loess double-arched tunnel, this paper conducts field investigation on water damage to tunnels on Lishi-Jundu Expressway in Shanxi, China, confirms its development characteristics, builds an index system (covering 36 evaluation indexes for construction condition, design stage, construction stage, and operation stage) for the factors causing water damage to loess double-arched tunnel, applies TFN-AHP (triangular fuzzy number-analytic hierarchy process) in calculating the weight of indexes at different levels, and obtains the final sequence of weight of the factors causing water seepage to loess double-arched tunnel. It is found out that water damage to loess double-arched tunnel always develops in construction joints, expansion joints, settlement joints, and lining joints of tunnel and even around them; there is dotted water seepage, linear water seepage, and planar water seepage according to the trace and scope of water damage to tunnel lining. The result shows that water damage to loess double-arched tunnel mainly refers to linear water seepage, planar water seepage is also developed well, and partition and equipment box at the entrance and exit of tunnel are prone to water seepage; construction stage is crucial for controlling water damage to loess double-arched tunnel, atmospheric precipitation is the main water source, and the structure defect of double-arched tunnel increases the possibility of water seepage; the final sequence for weight of various factors is similar to the actual result
    corecore