1,352 research outputs found

    Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis

    Full text link
    Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.Comment: This paper is accepted in AAAI 202

    The role of lake heat flux in the growth and melting of ice

    Get PDF
    For shallow lakes, ice mass balance is largely dominated by thermodynamic processes. The heat flux from lake water plays a critical role for ice growth and melting. In this study, we applied a numerical thermodynamic lake model to investigate the sensitivity of the lake ice mass balance to the lake heat flux during the growth and melting periods. Several groups of modelling experiments forced by simplified climatological weather data have been carried out. Two sites, Lake Wuliangsuhai in Inner Mongolia, China’s arid region and Lake Orajärvi in snowy Finnish Lapland, were investigated. Lake heat flux affects inversely proportional maximum ice thickness followed by ice break-up date. The solar radiation and surface albedo complicate the effect of lake heat flux on lake ice mass balance during melting season. With heavy snowfall, the increase of lake heat flux adds on the formation of granular ice but reduces the formation of columnar ice. Under climatological weather conditions, the ice cover winter seasonal mean lake heat flux were 14 W·m−2 and 4 W·m−2 in Lake Wuliangsuhai and Lake Orajärvi, respectively.Peer reviewe

    Far-Field Tunable Nano-focusing Based on Metallic Slits Surrounded with Nonlinear-Variant Widths and Linear-Variant Depths of Circular Dielectric Grating

    Full text link
    In this work, we design a new tunable nanofocusing lens by the linear-variant depths and nonlinear-variant widths of circular grating for far field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, and the focal length of the this structures can be adjusted if the each groove depth and width of circular grating are arranged in traced profile. According to the numerical calculation, the range of focusing points shift is much more than other plasmonic lens, and the relative phase of emitting light scattered by surface plasmon coupling circular grating can be modulated by the nonlinear-variant width and linear-variant depth. The simulation result indicates that the different relative phase of emitting light lead to variant focal length. We firstly show a unique phenomenon for the linear-variant depths and nonlinear-variant widths of circular grating that the positive change and negative change of the depths and widths of grooves can result in different of variation trend between relative phases and focal lengths. These results paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical trapping, and sensing.Comment: 14pages,9figure

    MRI VS. FDG-PET for diagnosis of response to neoadjuvant therapy in patients with locally advanced rectal cancer

    Get PDF
    AimIn this study, we aimed to compare the diagnostic values of MRI and FDG-PET for the prediction of the response to neoadjuvant chemoradiotherapy (NACT) of patients with locally advanced Rectal cancer (RC).MethodsElectronic databases, including PubMed, Embase, and the Cochrane library, were systematically searched through December 2021 for studies that investigated the diagnostic value of MRI and FDG-PET in the prediction of the response of patients with locally advanced RC to NACT. The quality of the included studies was assessed using QUADAS. The pooled sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR), and the area under the ROC (AUC) of MRI and FDG-PET were calculated using a bivariate generalized linear mixed model, random-effects model, and hierarchical regression.ResultsA total number of 74 studies with recruited 4,105 locally advanced RC patients were included in this analysis. The pooled sensitivity, specificity, PLR, NLR, and AUC for MRI were 0.83 (95% CI: 0.77–0.88), 0.85 (95% CI: 0.79–0.89), 5.50 (95% CI: 4.11-7.35), 0.20 (95% CI: 0.14–0.27), and 0.91 (95% CI: 0.88–0.93), respectively. The summary sensitivity, specificity, PLR, NLR and AUC for FDG-PET were 0.81 (95% CI: 0.77-0.85), 0.75 (95% CI: 0.70–0.80), 3.29 (95% CI: 2.64–4.10), 0.25 (95% CI: 0.20–0.31), and 0.85 (95% CI: 0.82–0.88), respectively. Moreover, there were no significant differences between MRI and FDG-PET in sensitivity (P = 0.565), and NLR (P = 0.268), while the specificity (P = 0.006), PLR (P = 0.006), and AUC (P = 0.003) of MRI was higher than FDG-PET.ConclusionsMRI might superior than FGD-PET for the prediction of the response of patients with locally advanced RC to NACT

    The role of lake heat flux in the growth and melting of ice

    Get PDF
    For shallow lakes, ice mass balance is largely dominated by thermodynamic processes. The heat flux from lake water plays a critical role for ice growth and melting. In this study, we applied a numerical thermodynamic lake model to investigate the sensitivity of the lake ice mass balance to the lake heat flux during the growth and melting periods. Several groups of modelling experiments forced by simplified climatological weather data have been carried out. Two sites, Lake Wuliangsuhai in Inner Mongolia, China’s arid region and Lake Orajärvi in snowy Finnish Lapland, were investigated. Lake heat flux affects inversely proportional maximum ice thickness followed by ice break-up date. The solar radiation and surface albedo complicate the effect of lake heat flux on lake ice mass balance during melting season. With heavy snowfall, the increase of lake heat flux adds on the formation of granular ice but reduces the formation of columnar ice. Under climatological weather conditions, the ice cover winter seasonal mean lake heat flux were 14 W·m−2 and 4 W·m−2 in Lake Wuliangsuhai and Lake Orajärvi, respectively
    • …
    corecore