33 research outputs found

    Oil palm biomass wastes as renewable energy sources in Malaysia: potentials and challenges

    Get PDF
    This paper reviews the potentials and challenges of using Oil Palm Biomass Wastes (OPBW) as Renewable Energy (RE) source in Malaysia. The OPBW mainly includes Palm Oil Mill Effluent (POME) and Empty Fruit Bunches (EFB). From the present review, the major potentials of OPBW consist of their large availability, being a major sources of lignocellulosic materials for industrial, being economically viable, being a solution to the disposal problem and cost-benefit. The challenges of using OPBW as RE source are being a high dependency on the availability of the OPWB, unfair subsidies given to RE based fuel, the use of POME that produces methane, substantial amount of under-utilization of lignocellulosic wastes from OPBW, the need for further studies on the correct selection of generation plant size, and not economically competitive. Overall, the challenge is to make the OPBWs as a reliable, profitable and sustainable RE industry. Based on the present review mainly from Malaysia, there are definite potentials/advantages of using OPBW as RE source in Malaysia. Ways and suggestions on these practical issues on how to reduce problems facing the use of OPBW as RE source in Malaysia should be investigated and addressed before the large scale utilization of OPBW as RE source can be anticipated in Malaysia

    Novel Swine Influenza Virus Reassortants in Pigs, China

    Get PDF
    During swine influenza virus surveillance in pigs in China during 2006–2009, we isolated subtypes H1N1, H1N2, and H3N2 and found novel reassortment between contemporary swine and avian panzootic viruses. These reassortment events raise concern about generation of novel viruses in pigs, which could have pandemic potential

    Docosahexaenoic Acid-Derived Neuroprotectin D1 Induces Neuronal Survival via Secretase- and PPARγ-Mediated Mechanisms in Alzheimer's Disease Models

    Get PDF
    Neuroprotectin D1 (NPD1) is a stereoselective mediator derived from the omega-3 essential fatty acid docosahexaenoic acid (DHA) with potent inflammatory resolving and neuroprotective bioactivity. NPD1 reduces Aβ42 peptide release from aging human brain cells and is severely depleted in Alzheimer's disease (AD) brain. Here we further characterize the mechanism of NPD1's neurogenic actions using 3xTg-AD mouse models and human neuronal-glial (HNG) cells in primary culture, either challenged with Aβ42 oligomeric peptide, or transfected with beta amyloid precursor protein (βAPP)sw (Swedish double mutation APP695sw, K595N-M596L). We also show that NPD1 downregulates Aβ42-triggered expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) and of B-94 (a TNF-α-inducible pro-inflammatory element) and apoptosis in HNG cells. Moreover, NPD1 suppresses Aβ42 peptide shedding by down-regulating β-secretase-1 (BACE1) while activating the α-secretase ADAM10 and up-regulating sAPPα, thus shifting the cleavage of βAPP holoenzyme from an amyloidogenic into the non-amyloidogenic pathway. Use of the thiazolidinedione peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the irreversible PPARγ antagonist GW9662, and overexpressing PPARγ suggests that the NPD1-mediated down-regulation of BACE1 and Aβ42 peptide release is PPARγ-dependent. In conclusion, NPD1 bioactivity potently down regulates inflammatory signaling, amyloidogenic APP cleavage and apoptosis, underscoring the potential of this lipid mediator to rescue human brain cells in early stages of neurodegenerations

    ANALYSIS OF THE EFFECT ON THE MECHANICAL PROPERTIES OF THE LASER CUTTING AIRCRAFT SKIN

    No full text
    Laser cutting technology is widely used in manufacturing industry. But the laser absorptivity of the aircraft skin material is low,and the laser cutting quality is poor,so laser cutting is not applied in manufacturing of the aircraft skin. In order to searching laser cutting performance of the aircraft skin and the change of its mechanical properties by laser cutting,the surface topography analying,micro-hardness testing and tension,compression and shear test were carried used laser cutting test sample.The test result show that the test sample emerged freeze slag after laser cuting,and its tensile strength decreased slightly,but compression strength shear strength retained original level. So laser cutting technology can be used in edge manufacturing of the aircraft skin by improving the laser cutting process and rising the laser cutting quality

    Expression, purification and analysis of an Arabidopsis recombinant CBL-interacting protein kinase3 (CIPK3) and its constitutively active form

    No full text
    CIPK3 is a member of CBL (calcineurin B-like)-interacting serine\u2013threonine protein kinases which play an important role in many developmental and adaptation processes in Arabidopsis. Studies conducted on members of this family such as SOS2, PKS8 and PKS11 have provided insight into how these kinases interact with their target substrates in the signal-response process. Since SOS2, PKS8 and PKS11 have low enzymatic activities in vitro and their amino acid sequences are homologous to that of CIPK3, it was assumed that CIPK3 would have a low enzymatic activity. To enhance CIPK3 enzyme activity, a constitutively active form, CIPK3T183D, was generated by a Thr\ub9\u2078\ub3 to Asp\ub9\u2078\ub3 substitution in the activation loop. To obtain proteins for analysis, glutathione S-transferase (GST) fusion protein system was used. Although both CIPK3 and CIPK3T183D were successfully expressed, they were found in inclusion bodies with three truncated proteins. Since the truncated proteins had a similar af\ufb01nity to the GST-Bind Resin as the target protein, the one-step af\ufb01nity puri\ufb01cation could no longer be used. As an alternative, His fusion protein expression system was employed for protein production. Although both His-CIPK3 and His-CIPK3T183D also accumulated in inclusion bodies, they were expressed as a single protein species. A method involving Sarkosyl was developed for isolating and purifying the His fusion proteins. His-CIPK3 and HisCIPK3T183D produced were highly puri\ufb01ed and enzymatically active. In addition, a 9-fold increase in kinase activity in His-CIPK3T183D was observed, indicating that Thr\ub9\u2078\ub3 to Asp\ub9\u2078\ub3 substitution in the activation loop of CIPK3 had succeeded in enhancing the kinase activity.Peer reviewed: YesNRC publication: Ye

    Lightweight Vehicle Detection Based on Improved YOLOv5s

    No full text
    A vehicle detection algorithm is an indispensable component of intelligent traffic management and control systems, influencing the efficiency and functionality of the system. In this paper, we propose a lightweight improvement method for the YOLOv5 algorithm based on integrated perceptual attention, with few parameters and high detection accuracy. First, we propose a lightweight module IPA with a Transformer encoder based on integrated perceptual attention, which leads to a reduction in the number of parameters while capturing global dependencies for richer contextual information. Second, we propose a lightweight and efficient multiscale spatial channel reconstruction (MSCCR) module that does not increase parameter and computational complexity and facilitates representative feature learning. Finally, we incorporate the IPA module and the MSCCR module into the YOLOv5s backbone network to reduce model parameters and improve accuracy. The test results show that, compared with the original model, the model parameters decrease by about 9%, the average accuracy (mAP@50) increases by 3.1%, and the FLOPS does not increase

    The microstructure and mechanical properties of novel Fe-rich Fe–Cr–Ni–Ta eutectic multi-principal element alloys

    No full text
    Co–Cr–Fe–Ni–Ta eutectic multi-principal element alloys (MPEAs) demonstrate great potential to replace structural alloys in engineering applications. However, the cost of these alloys is high due to the usage of a number of precious metals. To decrease the cost, the present work developed a set of novel Fe55Cr15Ni30−xTax (x = 0, 5, 8, 10 and 15 at.%) eutectic MPEAs and the effect of Ta on microstructure and compressive mechanical properties were investigated for the first time. As the Ta content increases, the microstructure changes from a single-phase FCC solid solution (x = 0) to hypoeutectic microstructure (x = 6), then to eutectic microstructure (x = 8), and eventually to hypereutectic microstructure (x = 10 and 15). The yield strength and the hardness increase at the expense of ductility reduction with increasing Ta content. The strengthening mechanism of this alloy system is mainly second-phase strengthening caused by Laves phase and grain boundary strengthening produced by eutectic interface, supplemented by solid solution strengthening. The Fe55Cr15Ni22Ta8 and Fe55Cr15Ni20Ta10 alloys present the excellent comprehensive mechanical properties. The yield strength, fracture strength and fracture strain of the former are 838 MPa, 1994 MPa and 45.1%, respectively. The yield strength, fracture strength and fracture strain of the latter are 1029 MPa, 1956 MPa and 43.0%, respectively. The phase formation of Fe55Cr15Ni30−xTax alloys can be predicted by Md criterion. When Md ≥ 0.89, the alloys consist of FCC phase and Laves phase. Otherwise, the alloys consist of FCC single phase

    Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    No full text
    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two different subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING domain that mediates degradation of phosphate transporters at the plasma membrane; ii) an SPX domain that facilitates NLAâ s interaction with the phosphate transporters, and also exists in other proteins that regulate the nuclear transcription factors that control the phosphate starvation response pathway; iii) a linker domain that lies between the RING and SPX domains; and iv) a C-terminal domain, which, like the linker region, is of unknown function. Here we carried out a mutational analysis of NLA, which indicated that all the domains are not only essential for proper functioning of the protein, but also mediate its localization to the plasma membrane and/or nucleus, as well as to different subdomains within the nucleus. Overall, the results provide new insights to the distinct protein motifs within NLA and the role(s) that this protein serves at different subcellular sites with respect to the regulation of nitrogen-dependent phosphate homeostasis as well as other possible physiological functions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Imipramine Protects against Bone Loss by Inhibition of Osteoblast-Derived Microvesicles

    No full text
    The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to increased membrane fluidity and facilitates MV generation. This effect can be inhibited by imipramine, an inhibitor of acid sphingomyelinase (ASM), which is also known as a member of tricyclic antidepressants (TCAs). A recent study has reported that in vitro treatment of imipramine blocked MVs release from glial cells. However, whether imipramine has this effect on osteoblast-derived MVs and whether it is involved in MV generation in vivo is unclear. Here, our investigations found that imipramine slightly reduced the expression of osteoblast differentiation of related genes, but did not impact parathyroid hormone (PTH) regulation for these genes and also did not affect receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation; however, imipramine treatment blocked MVs released from osteoblasts and inhibited MV-induced osteoclast formation. In vivo, mice administrated with imipramine were protected from ovariectomy-induced bone loss as evaluated by various bone structural parameters and serum levels of biochemical markers. Our results suggest that inhibiting the production of MVs containing RANKL in vivo is very important for preventing bone loss
    corecore