9,755 research outputs found
Unbiased Comparative Evaluation of Ranking Functions
Eliciting relevance judgments for ranking evaluation is labor-intensive and
costly, motivating careful selection of which documents to judge. Unlike
traditional approaches that make this selection deterministically,
probabilistic sampling has shown intriguing promise since it enables the design
of estimators that are provably unbiased even when reusing data with missing
judgments. In this paper, we first unify and extend these sampling approaches
by viewing the evaluation problem as a Monte Carlo estimation task that applies
to a large number of common IR metrics. Drawing on the theoretical clarity that
this view offers, we tackle three practical evaluation scenarios: comparing two
systems, comparing systems against a baseline, and ranking systems. For
each scenario, we derive an estimator and a variance-optimizing sampling
distribution while retaining the strengths of sampling-based evaluation,
including unbiasedness, reusability despite missing data, and ease of use in
practice. In addition to the theoretical contribution, we empirically evaluate
our methods against previously used sampling heuristics and find that they
generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page
Applications of polymer optical fibre grating sensors to condition monitoring of textiles
Fibre Bragg gratings (FBGs) in polymer optical fibres (POFs) have been used to measure the strain in a woven textile.
FBGs in both POFs and silica optical fibres were attached to a woven textile specimen, and their performance
characterised. It was demonstrated that the POF FBGs provide improved strain transfer coefficients and reduce local
structural reinforcement compared to silica FBGs and therefore make a more suitable proposition for textile monitoring
Selective fluorescent probes for molecular imaging of ROS/RNS: Challenges and opportunities
Session-1: The Power of Technology - Key Note Speakerpublished_or_final_versio
Quantum Phase Diffusion in a Small Underdamped Josephson Junction
Quantum phase diffusion in a small underdamped Nb/AlO/Nb junction (
0.4 m) is demonstrated in a wide temperature range of 25-140 mK where
macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We
propose a two-step transition model to describe the switching process in which
the escape rate out of the potential well and the transition rate from phase
diffusion to the running state are considered. The transition rate extracted
from the experimental switching current distribution follows the predicted
Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes
dominant.Comment: 4 pages, 4 figures, 1 tabl
Quantum and classical resonant escapes of a strongly-driven Josephson junction
The properties of phase escape in a dc SQUID at 25 mK, which is well below
quantum-to-classical crossover temperature , in the presence of strong
resonant ac driving have been investigated. The SQUID contains two
Nb/Al-AlO/Nb tunnel junctions with Josephson inductance much larger than
the loop inductance so it can be viewed as a single junction having adjustable
critical current. We find that with increasing microwave power and at
certain frequencies and /2, the single primary peak in the
switching current distribution, \textrm{which is the result of macroscopic
quantum tunneling of the phase across the junction}, first shifts toward lower
bias current and then a resonant peak develops. These results are explained
by quantum resonant phase escape involving single and two photons with
microwave-suppressed potential barrier. As further increases, the primary
peak gradually disappears and the resonant peak grows into a single one while
shifting further to lower . At certain , a second resonant peak appears,
which can locate at very low depending on the value of . Analysis
based on the classical equation of motion shows that such resonant peak can
arise from the resonant escape of the phase particle with extremely large
oscillation amplitude resulting from bifurcation of the nonlinear system. Our
experimental result and theoretical analysis demonstrate that at ,
escape of the phase particle could be dominated by classical process, such as
dynamical bifurcation of nonlinear systems under strong ac driving.Comment: 10 pages, 9 figures, 1 tabl
Angle-resolved photoemission evidence of s-wave superconducting gap in KxFe2-ySe2 superconductor
Although nodeless superconducting gap has been observed on the large Fermi
pockets around the zone corner in KxFe2-ySe2, whether its pairing symmetry is
s-wave or nodeless d-wave is still under intense debate. Here we report an
isotropic superconducting gap distribution on the small electron Fermi pocket
around the Z point in KxFe2-ySe2, which favors the s-wave pairing symmetry.Comment: 4 pages, 4 figure
- …
