7,917 research outputs found

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    Applications of polymer optical fibre grating sensors to condition monitoring of textiles

    Get PDF
    Fibre Bragg gratings (FBGs) in polymer optical fibres (POFs) have been used to measure the strain in a woven textile. FBGs in both POFs and silica optical fibres were attached to a woven textile specimen, and their performance characterised. It was demonstrated that the POF FBGs provide improved strain transfer coefficients and reduce local structural reinforcement compared to silica FBGs and therefore make a more suitable proposition for textile monitoring

    Selective fluorescent probes for molecular imaging of ROS/RNS: Challenges and opportunities

    Get PDF
    Session-1: The Power of Technology - Key Note Speakerpublished_or_final_versio

    Quantum Phase Diffusion in a Small Underdamped Josephson Junction

    Full text link
    Quantum phase diffusion in a small underdamped Nb/AlOx_x/Nb junction (∌\sim 0.4 ÎŒ\mum2^2) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step transition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.Comment: 4 pages, 4 figures, 1 tabl

    Protective effect of low-dose risedronate against osteocyte apoptosis and bone loss in ovariectomized rats

    Get PDF
    Osteocyte apoptosis is the first reaction to estrogen depletion, thereby stimulating osteoclastic bone resorption resulting in bone loss. We investigated the effects of two different risedronate (RIS) doses (high and low) on osteocyte apoptosis, osteoclast activity and bone loss in ovariectomized rats. Forty rats with ovariectomy (OVX) and sham ovariectomy (SHAM) were divided into 4 groups: 1) SHAM rats treated with saline (SHAM); 2) OVX rats treated with saline (OVX); 3) OVX rats treated with low-dose RIS (OVX-LR, 0.08 ÎŒg/kg/day); 4) OVX rats treated with high-dose RIS (OVX-HR, 0.8 ÎŒg/kg/day). All animals were sacrificed 90 days after surgery for the examinations of osteocyte apoptosis by caspase-3 staining, osteoclast activity by TRAP staining and bone volume by micro-CT scanning in lumbar vertebral cancellous bone. Both low and high dose RIS significantly reduced caspase-3 positive osteocytes, empty lacunae and TRAP positive osteoclasts in OVX rats. Although the difference in caspase-3 positive osteocytes was not significant between the OVX-LR and OVX-HR groups, numerically these cells were significantly more prevalent in OVX-HR (not OVX-LR) group than in SHAM group. TRAP positive osteoclasts were significantly higher in OVX-LR group than in SHAM or OVX-HR group. There was no significant difference in bone volume among the OVX-LR, OVX-HR and SHAM groups, but lower in OVX group alone. However, significant increase in trabecular thickness only occurred in OVX-LR group. We conclude that both low and high dose RIS significantly inhibit osteocyte apoptosis and osteoclast activity in OVX rats, but the low-dose RIS has weaker effect on osteoclast activity. However, low-dose RIS preserves cancellous bone mass and microarchitecture as well as high-dose RIS after estrogen depletion

    Quantum and classical resonant escapes of a strongly-driven Josephson junction

    Get PDF
    The properties of phase escape in a dc SQUID at 25 mK, which is well below quantum-to-classical crossover temperature TcrT_{cr}, in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlOx_{x} /Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power WW and at certain frequencies Îœ\nu and Îœ\nu /2, the single primary peak in the switching current distribution, \textrm{which is the result of macroscopic quantum tunneling of the phase across the junction}, first shifts toward lower bias current II and then a resonant peak develops. These results are explained by quantum resonant phase escape involving single and two photons with microwave-suppressed potential barrier. As WW further increases, the primary peak gradually disappears and the resonant peak grows into a single one while shifting further to lower II. At certain WW, a second resonant peak appears, which can locate at very low II depending on the value of Îœ\nu . Analysis based on the classical equation of motion shows that such resonant peak can arise from the resonant escape of the phase particle with extremely large oscillation amplitude resulting from bifurcation of the nonlinear system. Our experimental result and theoretical analysis demonstrate that at Tâ‰ȘTcrT\ll T_{cr}, escape of the phase particle could be dominated by classical process, such as dynamical bifurcation of nonlinear systems under strong ac driving.Comment: 10 pages, 9 figures, 1 tabl

    Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-identification

    Get PDF
    © 2020, Springer Nature Switzerland AG. Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings
    • 

    corecore