758 research outputs found

    3-D surface modelling of the human body and 3-D surface anthropometry

    Get PDF
    This thesis investigates three-dimensional (3-D) surface modelling of the human body and 3-D surface anthropometry. These are two separate, but closely related, areas. 3-D surface modelling is an essential technology for representing and describing the surface shape of an object on a computer. 3-D surface modelling of the human body has wide applications in engineering design, work space simulation, the clothing industry, medicine, biomechanics and animation. These applications require increasingly realistic surface models of the human body. 3-D surface anthropometry is a new interdisciplinary subject. It is defined in this thesis as the art, science, and technology of acquiring, modelling and interrogating 3-D surface data of the human body. [Continues.

    Of Natural Killer cells and Hepatitis C Virus

    Get PDF
    Natural Killer (NK) cells are important effector cells in Hepatitis C Virus (HCV) infection, a virus that chronically infects around 2.5% of the world population and is a major cause of liver disease and hepatocellular carcinoma. The exact mechanisms, however, through which NK cells are activated in response to HCV remain elusive. Using the well-established HCV replicon cell-culture model we show that after co- culture of HCV replicon-carrying hepatocytes with peripheral blood mononuclear cells (PBMCs), NK cells increase expression of the high-affinity IL-2 receptor chain CD25, proliferate rapidly and produce IFN-gamma. Activation of NK cells was dependent on IL-2, most likely produced by T cells and on cell-cell contact mediated signals from monocytes. Monocytes from replicon-carrying co-cultures showed increased expression of OX40L, a member of the tumor necrosis factor family and concurrently its receptor OX40 was increased on NK cells. Blocking of OX40L in those co-cultures, as well as depletion of CD14+ monocytes abrogated the virus-induced activation and effector functions of NK cells. Together, our data reveals a novel mechanism of monocyte mediated NK cell activation against virus-infected cells involving the OX40/OX40L axis with potential relevance for therapeutic intervention by e.g. agonistic antibodies against OX40, which are already tested in cancer therapy

    Assessing slope forest effect on flood process caused by a short-duration storm in a small catchment

    Get PDF
    Land use has significant impact on the hydrologic and hydraulic processes in a catchment. This work applies a hydrodynamic based numerical model to quantitatively investigate the land use effect on the flood patterns under various rainfall and terrain conditions in an ideal V-shaped catchment and a realistic catchment, indicating the land use could considerably affect the rainfall-flood process and such effect varies with the catchment terrain, land use scenario and the rainfall events. The rainfall-flood process is less sensitive for the side slope than the channel slope. For a channel slope lower than the critical value in this work, the forest located in the middle of the catchment slope could most effectively attenuate the flood peak. When the channel slope is higher than the critical one, forest located in the downstream of the catchment could most significantly mitigate the peak discharge. Moreover, the attenuation effect becomes more obvious as the rainfall becomes heavier. The fragmentation of vegetation does not reduce the flood peak in a more obvious way, compared with the integral vegetation patterns with the same area proportion. The research can help more reasonably guide the land use plan related to flood risk

    Visualization 1.avi

    No full text
    Dynamic mapping of the BGC response during OGTT with the capillary resolutio

    MOESM1 of Genome-wide characterization of the Rab gene family in Gossypium by comparative analysis

    No full text
    Additional file 1. List of Rab genes in G. raimondii, G. hirsutum, G. barbadense and G. arboreum, respectively

    The suppression of both synaptic excitations in cortex in the generation of seizures.

    No full text
    <p>(A) Oscillation frequency as a function of maximal synaptic conductance (X-axis) and maximal synaptic conductance (Y-axis). If and are decreased “proportionally”, the network will remain in SP (solid arrow). However, if the decreases of the conductances are out of proportion, it is possible for the network to transit from SP to SW (dashed arrow). (B) The field potential of the starting point of both arrows (, ). (C) The field potential of the ending point of the dashed arrow (, ). (D) The field potential of the ending point of the solid arrow (, ). The results in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0022440#pone-0022440-g006" target="_blank">Fig. 6</a> are obtained with .</p

    El Diario de Pontevedra : periódico liberal: Ano XXXIV Número 10024 - 1917 setembro 10

    No full text
    Additional file 3. The transcriptome data (FPKM) of Rabs in distinct tissues

    The interplay of GABA-mediated inhibitions in the generation of epileptic seizures.

    No full text
    <p>(A) Oscillation frequency as a function of maximal synaptic conductance (X-axis) and maximal synaptic conductance (Y-axis). (B) Oscillation frequency as a function of maximal synaptic conductance (X-axis) and maximal synaptic conductance (Y-axis).</p

    The breakdown of optimal treatments as a function of the potency of the NaP antagonist .

    No full text
    <p>The breakdown of optimal treatments as a function of the potency of the NaP antagonist .</p

    Trajectories and phase flow representations of spindle and SW oscillations in a two-dimensional subspace.

    No full text
    <p>(A) Trajectory of spindle oscillation in a -second simulation. (B) Phase flow representation of spindle oscillation (limit cycle). (C) Trajectory of SW oscillation in a -second simulation. (D) Phase flow representation of SW oscillation (limit cycle).</p
    corecore