347 research outputs found

    Numerical study on the effect of welding and heating treatments on strength of high strength steel column

    Full text link
    [EN] High strength steel box columns are usually fabricated from steel slab by applying welding. The welding process can introduce residual stresses and geometric imperfections into the columns and influence the column strength. In this study, a numerical investigation on the behavior of high strength steel thin-walled box columns under the compression force was carried out. The welding processes were firstly simulated with commercial package ABAQUS in this study to find out the residual stress distributions in high strength steel box column. After that, the column behaviors under the compression were modelled with predefined field from the previous step. The effect of the welding process (including flux-core arc welding and submerged arc welding), heating treatment (including preheating and post-weld heat treatment) and geometrical imperfection on the residual stress field and box column strength was investigated and discussed.Jin, J.; Bao, W.; Liu, J.; Peng, Z. (2018). Numerical study on the effect of welding and heating treatments on strength of high strength steel column. En Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018. Editorial Universitat Politècnica de València. 667-673. https://doi.org/10.4995/ASCCS2018.2018.8370OCS66767

    SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive, Loss-Tolerant Quantum Metrology

    Full text link
    We present experimental and theoretical results on a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer, i.e., a Mach-Zehnder interferometer with parametric amplifiers in place of beam splitters. This SU(2)-in-SU(1,1) nested interferometer (SISNI) simultaneously achieves high signal-to-noise ratio (SNR), sensitivity beyond the standard quantum limit (SQL) and tolerance to photon losses external to the interferometer, e.g., in detectors. We implement a SISNI using parametric amplification by four-wave mixing (FWM) in Rb vapor and a laser-fed Mach-Zehnder SU(2) interferometer. We observe path-length sensitivity with SNR 2.2 dB beyond the SQL at power levels (and thus SNR) 2 orders of magnitude beyond those of previous loss-tolerant interferometers. We find experimentally the optimal FWM gains and find agreement with a minimal quantum noise model for the FWM process. The results suggest ways to boost the in-practice sensitivity of high-power interferometers, e.g., gravitational wave interferometers, and may enable high-sensitivity, quantum-enhanced interferometry at wavelengths for which efficient detectors are not available.Comment: 6 pages + 4 of supplemental material, 5 figure

    Spectral hardness evolution characteristics of tracking Gamma-ray Burst pulses

    Full text link
    Employing a sample presented by Kaneko et al. (2006) and Kocevski et al. (2003), we select 42 individual tracking pulses (here we defined tracking as the cases in which the hardness follows the same pattern as the flux or count rate time profile) within 36 Gamma-ray Bursts (GRBs) containing 527 time-resolved spectra and investigate the spectral hardness, EpeakE_{peak} (where EpeakE_{peak} is the maximum of the νFν\nu F_{\nu} spectrum), evolutionary characteristics. The evolution of these pulses follow soft-to-hard-to-soft (the phase of soft-to-hard and hard-to-soft are denoted by rise phase and decay phase, respectively) with time. It is found that the overall characteristics of EpeakE_{peak} of our selected sample are: 1) the EpeakE_{peak} evolution in the rise phase always start on the high state (the values of EpeakE_{peak} are always higher than 50 keV); 2) the spectra of rise phase clearly start at higher energy (the median of EpeakE_{peak} are about 300 keV), whereas the spectra of decay phase end at much lower energy (the median of EpeakE_{peak} are about 200 keV); 3) the spectra of rise phase are harder than that of the decay phase and the duration of rise phase are much shorter than that of decay phase as well. In other words, for a complete pulse the initial EpeakE_{peak} is higher than the final EpeakE_{peak} and the duration of initial phase (rise phase) are much shorter than the final phase (decay phase). This results are in good agreement with the predictions of Lu et al. (2007) and current popular view on the production of GRBs. We argue that the spectral evolution of tracking pulses may be relate to both of kinematic and dynamic process even if we currently can not provide further evidences to distinguish which one is dominant. Moreover, our statistical results give some witnesses to constrain the current GRB model.Comment: 32 pages, 26 figures, 3 tables, accepted for publication in New Astronom

    Entangled light in transition through the generation threshold

    Full text link
    We investigate continuous variable entangling resources on the base of two-mode squeezing for all operational regimes of a nondegenerate optical parametric oscillator with allowance for quantum noise of arbitrary level. The results for the quadrature variances of a pair of generated modes are obtained by using the exact steady-state solution of Fokker-Planck equation for the complex P-quasiprobability distribution function. We find a simple expression for the squeezed variances in the near-threshold range and conclude that the maximal two-mode squeezing reaches 50% relative to the level of vacuum fluctuations and is achieved at the pump field intensity close to the generation threshold. The distinction between the degree of two-mode squeezing for monostable and bistable operational regimes is cleared up.Comment: 7 pages, 4 figures; Content changed: more details added to the discussion. To be published in Phys. Rev.

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore