64 research outputs found

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Utility and lower limits of frequency detection in surface electrode stimulation for somatosensory brain-computer interface in humans

    Get PDF
    Objective: Stimulation of the primary somatosensory cortex (S1) has been successful in evoking artificial somatosensation in both humans and animals, but much is unknown about the optimal stimulation parameters needed to generate robust percepts of somatosensation. In this study, the authors investigated frequency as an adjustable stimulation parameter for artificial somatosensation in a closed-loop brain-computer interface (BCI) system. Methods: Three epilepsy patients with subdural mini-electrocorticography grids over the hand area of S1 were asked to compare the percepts elicited with different stimulation frequencies. Amplitude, pulse width, and duration were held constant across all trials. In each trial, subjects experienced 2 stimuli and reported which they thought was given at a higher stimulation frequency. Two paradigms were used: first, 50 versus 100 Hz to establish the utility of comparing frequencies, and then 2, 5, 10, 20, 50, or 100 Hz were pseudorandomly compared. Results: As the magnitude of the stimulation frequency was increased, subjects described percepts that were “more intense” or “faster.” Cumulatively, the participants achieved 98.0% accuracy when comparing stimulation at 50 and 100 Hz. In the second paradigm, the corresponding overall accuracy was 73.3%. If both tested frequencies were less than or equal to 10 Hz, accuracy was 41.7% and increased to 79.4% when one frequency was greater than 10 Hz (p = 0.01). When both stimulation frequencies were 20 Hz or less, accuracy was 40.7% compared with 91.7% when one frequency was greater than 20 Hz (p < 0.001). Accuracy was 85% in trials in which 50 Hz was the higher stimulation frequency. Therefore, the lower limit of detection occurred at 20 Hz, and accuracy decreased significantly when lower frequencies were tested. In trials testing 10 Hz versus 20 Hz, accuracy was 16.7% compared with 85.7% in trials testing 20 Hz versus 50 Hz (p < 0.05). Accuracy was greater than chance at frequency differences greater than or equal to 30 Hz. Conclusions: Frequencies greater than 20 Hz may be used as an adjustable parameter to elicit distinguishable percepts. These findings may be useful in informing the settings and the degrees of freedom achievable in future BCI systems

    Electrocorticographic changes in field potentials following natural somatosensory percepts in humans

    Get PDF
    Objective: Restoration of somatosensory deficits in humans requires a clear understanding of the neural representations of percepts. To characterize the cortical response to naturalistic somatosensation, we examined field potentials in the primary somatosensory cortex of humans. Methods: Four patients with intractable epilepsy were implanted with subdural electrocorticography (ECoG) electrodes over the hand area of S1. Three types of stimuli were applied, soft-repetitive touch, light touch, and deep touch. Power in the alpha (8–15 Hz), beta (15–30 Hz), low-gamma (30–50 Hz), and high-gamma (50–125 Hz) frequency bands were evaluated for significance. Results: Seventy-seven percent of electrodes over the hand area of somatosensory cortex exhibited changes in these bands. High-gamma band power increased for all stimuli, with concurrent alpha and beta band power decreases. Earlier activity was seen in these bands in deep touch and light touch compared to soft touch. Conclusions: These findings are consistent with prior literature and suggest a widespread response to focal touch, and a different encoding of deeper pressure touch than soft touch

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Overconfident Investors, Predictable Returns, and Excessive Trading

    Get PDF
    The last several decades have witnessed a shift away from a fully rational paradigm of financial markets toward one in which investor behavior is influenced by psychological biases. Two principal factors have contributed to this evolution: a body of evidence showing how psychological bias affects the behavior of economic actors; and an accumulation of evidence that is hard to reconcile with fully rational models of security market trading volumes and returns. In particular, asset markets exhibit trading volumes that are high, with individuals and asset managers trading aggressively, even when such trading results in high risk and low net returns. Moreover, asset prices display patterns of predictability that are difficult to reconcile with rational-expectations–based theories of price formation. In this paper, we discuss the role of overconfidence as an explanation for these patterns

    Brain-Computer Interfaces in Quadriplegic Patients

    No full text
    Spinal cord injury affects approximately 17,000 people per year in the United States, with a prevalence of 280,000 people. The loss of function suffered by these patients is life altering. Quadriplegic patients require lifelong assistance to interact with their world. Brain-computer interfaces (BCI), have the potential to restore function to these patients in a meaningful way

    Brain-Computer Interfaces in Quadriplegic Patients

    No full text
    Spinal cord injury affects approximately 17,000 people per year in the United States, with a prevalence of 280,000 people. The loss of function suffered by these patients is life altering. Quadriplegic patients require lifelong assistance to interact with their world. Brain-computer interfaces (BCI), have the potential to restore function to these patients in a meaningful way
    corecore