311 research outputs found

    Time-Varying Systematic Illiquidity and Mispricing in Reits

    Get PDF
    Master'sMASTER OF SCIENCE (ESTATE MANAGEMENT

    Trajectory-Aware Body Interaction Transformer for Multi-Person Pose Forecasting

    Full text link
    Multi-person pose forecasting remains a challenging problem, especially in modeling fine-grained human body interaction in complex crowd scenarios. Existing methods typically represent the whole pose sequence as a temporal series, yet overlook interactive influences among people based on skeletal body parts. In this paper, we propose a novel Trajectory-Aware Body Interaction Transformer (TBIFormer) for multi-person pose forecasting via effectively modeling body part interactions. Specifically, we construct a Temporal Body Partition Module that transforms all the pose sequences into a Multi-Person Body-Part sequence to retain spatial and temporal information based on body semantics. Then, we devise a Social Body Interaction Self-Attention (SBI-MSA) module, utilizing the transformed sequence to learn body part dynamics for inter- and intra-individual interactions. Furthermore, different from prior Euclidean distance-based spatial encodings, we present a novel and efficient Trajectory-Aware Relative Position Encoding for SBI-MSA to offer discriminative spatial information and additional interactive clues. On both short- and long-term horizons, we empirically evaluate our framework on CMU-Mocap, MuPoTS-3D as well as synthesized datasets (6 ~ 10 persons), and demonstrate that our method greatly outperforms the state-of-the-art methods. Code will be made publicly available upon acceptance.Comment: Accepted by CVPR2023, 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:2208.0922

    IOB: Integrating Optimization Transfer and Behavior Transfer for Multi-Policy Reuse

    Full text link
    Humans have the ability to reuse previously learned policies to solve new tasks quickly, and reinforcement learning (RL) agents can do the same by transferring knowledge from source policies to a related target task. Transfer RL methods can reshape the policy optimization objective (optimization transfer) or influence the behavior policy (behavior transfer) using source policies. However, selecting the appropriate source policy with limited samples to guide target policy learning has been a challenge. Previous methods introduce additional components, such as hierarchical policies or estimations of source policies' value functions, which can lead to non-stationary policy optimization or heavy sampling costs, diminishing transfer effectiveness. To address this challenge, we propose a novel transfer RL method that selects the source policy without training extra components. Our method utilizes the Q function in the actor-critic framework to guide policy selection, choosing the source policy with the largest one-step improvement over the current target policy. We integrate optimization transfer and behavior transfer (IOB) by regularizing the learned policy to mimic the guidance policy and combining them as the behavior policy. This integration significantly enhances transfer effectiveness, surpasses state-of-the-art transfer RL baselines in benchmark tasks, and improves final performance and knowledge transferability in continual learning scenarios. Additionally, we show that our optimization transfer technique is guaranteed to improve target policy learning.Comment: 26 pages, 9 figure

    Suppression of Dephasing by Qubit Motion in Superconducting Circuits

    Get PDF
    This work was supported by the National Basic Research Program of China (Grants No. 2014CB921200 and No. 2012CB927404), U.S. NSF Grants No. PHY-1314758 and No. PHY-1314861, the National Natural Science Foundation of China (Grants No. 11434008 and No. 11222437), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR12A04001).We suggest and demonstrate a protocol which suppresses the low-frequency dephasing by qubit motion, i.e., transfer of the logical qubit of information in a system of n≥2 physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. Our analysis of its effectiveness against noises with arbitrary correlations, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as =√n. In general, the protocol provides a diagnostic tool for measurements of the noise correlations

    Exploring personalised autonomous vehicles to influence user trust

    Get PDF
    Trust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognitive underpinnings of drivers’ trust in AVs. The personalised AV system is able to identify the driving behaviours of users and thus adapt the driving style of the AV accordingly. A prototype of a personalised AV was designed and evaluated in a lab-based experimental study of 36 human drivers, which investigated the impact of the personalised AV on user trust when compared with manual human driving and non-personalised AVs. The findings show that a personalised AV appears to be significantly more reliable through accepting and understanding each driver’s behaviour, which could thereby increase a user’s willingness to trust the system. Furthermore, a personalised AV brings a sense of familiarity by making the system more recognisable and easier for users to estimate the quality of the automated system. Personalisation parameters were also explored and discussed to support the design of AV systems to be more socially acceptable and trustworthy

    Quantum Phase Diffusion in a Small Underdamped Josephson Junction

    Full text link
    Quantum phase diffusion in a small underdamped Nb/AlOx_x/Nb junction (\sim 0.4 μ\mum2^2) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step transition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.Comment: 4 pages, 4 figures, 1 tabl
    corecore