78 research outputs found

    A Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS

    Get PDF
    Using solid building models, instead of the surface models in City Geography Markup Language (CityGML), can facilitate data integration between Building Information Modeling (BIM) and Geographic Information System (GIS). The use of solid models, however, introduces a problem of model simplification on the GIS side. The aim of this study is to solve this problem by developing a framework for generating simplified solid building models from BIM. In this framework, a set of Level of Details (LoDs) were first defined to suit solid building models—referred to as s-LoD, rang-ing from s-LoD1 to s-LoD4—and three unique problems in implementing s-LoDs were identified and solved by using a semantics-based approach, including identifying external objects for s-LoD2 and s-LoD3, distinguishing various slabs, and generating valid external walls for s-LoD2 and s-LoD3. The feasibility of the framework was validated by using BIM models, and the result shows that using semantics from BIM can make it easier to convert and simplify building models, which in turn makes BIM information more practical in GIS

    Experimental measurements of bulk modulus for two types of hydraulic oil at pressures to 140MPa and temperatures to 180°C

    Get PDF
    Bulk modulus of hydraulic oil represents the resistance of hydraulic oil to compression and is the reciprocal of compressibility. The bulk modulus is a basic thermodynamic property of hydraulic oil that has a very important influence on work efficiency and dynamic characteristics of hydraulic systems, especially for the hydraulic systems at ultra-high pressure or ultra-high temperature. In this study, a bulk modulus experimental equipment for hydraulic oil was designed and manufactured, two types of hydraulic oil were selected and its isothermal secant bulk modulus were measured at pressures to 140MPa and temperatures of 20~180°C. Compared the experimental results with the calculated results from the prediction equations of liquid bulk modulus that proposed by Klaus, Hayward, and Song, it is found that the experimental results are not completely identical with the calculated results

    Forage biomass estimation using sentinel-2 imagery at high latitudes

    Get PDF
    Forages are the most important kind of crops at high latitudes and are the main feeding source for ruminant-based dairy industries. Maximizing the economic and ecological performances of farms and, to some extent, of the meat and dairy sectors require adequate and timely supportive field-specific information such as available biomass. Sentinel-2 satellites provide open access imagery that can monitor vegetation frequently. These spectral data were used to estimate the dry matter yield (DMY) of harvested forage fields in northern Sweden. Field measurements were conducted over two years at four sites with contrasting soil and climate conditions. Univariate regression and multivariate regression, including partial least square, support vector machine and random forest, were tested for their capability to accurately and robustly estimate in-season DMY using reflectance values and vegetation indices obtained from Sentinel-2 spectral bands. Models were built using an iterative (300 times) calibration and validation approach (75% and 25% for calibration and validation, respectively), and their performances were formally evaluated using an independent dataset. Among these algorithms, random forest regression (RFR) produced the most stable and robust results, with Nash–Sutcliffe model efficiency (NSE) values (average ± standard deviation) for the calibration, validation and evaluation of 0.92 ± 0.01, 0.55 ± 0.22 and 0.86 ± 0.04, respectively. Although relatively promising, these results call for larger and more comprehensive datasets as performances vary largely between calibration, validation and evaluation datasets. Moreover, RFR, as any machine learning algorithm regression, requires a very large dataset to become stable in terms of performance

    Nuchal skinfold thickness in pediatric brain tumor patients

    Get PDF
    BACKGROUND: Severe obesity and tumor relapse/progression have impact on long-term prognosis in pediatric brain tumor patients. METHODS: In a cross-sectional study, we analyzed nuchal skinfold thickness (NST) on magnetic-resonance imaging (MRI) follow-up monitoring as a parameter for assessment of nuchal adipose tissue in 177 brain tumor patients (40 World Health Organization (WHO) grade 1–2 brain tumor; 31 grade 3–4 brain tumor; 106 craniopharyngioma), and 53 healthy controls. Furthermore, body mass index (BMI), waist-to-height ratio, caliper-measured skinfold thickness, and blood pressure were analyzed for association with NST. RESULTS: Craniopharyngioma patients showed higher NST, BMI, waist-to-height ratio, and caliper-measured skinfold thickness when compared to other brain tumors and healthy controls. WHO grade 1–2 brain tumor patients were observed with higher BMI, waist circumference and triceps caliper-measured skinfold thickness when compared to WHO grade 3–4 brain tumor patients. NST correlated with BMI, waist-to-height ratio, and caliper-measured skinfold thickness. NST, BMI and waist-to-height ratio were associated with increased blood pressure. In craniopharyngioma patients with hypothalamic involvement/lesion or gross-total resection, rate and degree of obesity were increased. CONCLUSIONS: NST could serve as a novel useful marker for regional nuchal adipose tissue. NST is highly associated with body mass and waist-to-height ratio, and easily measurable in routine MRI monitoring of brain tumor patients

    Accurate estimates of land surface energy fluxes and irrigation requirements from UAV-based thermal and multispectral sensors

    Get PDF
    The two-source energy balance model estimates canopy transpiration (Tr) and soil evaporation (E) traditionally from satellite partitions of remotely sensed land surface temperature (LST) and the Priestley-Taylor equation (TSEB-PT) at seasonal time with limited accuracy. The high spatial-temporal resolution spectral data collected by unmanned aerial vehicles (UAVs) provide valuable opportunity to estimate Tr and E precisely, improve the understanding of the seasonal and the diurnal cycle of evapotranspiration (ET), and timely detect agricultural drought. The UAV data vary in spatial resolution and the uncertainty imposed on the TSEB-PT outcome has thus far not being considered. To address these challenges and prospects, a new energy flux modelling framework based on TSEB-PT for high spatial resolution thermal and multispectral UAV data is proposed in this paper. Diurnal variations of LST in agricultural fields were recorded with a thermal infrared camera installed on an UAV during drought in 2018 and 2019. Observing potato as a test crop, LST, plant biophysical parameters derived from corresponding UAV multispectral data, and meteorological forcing variables were employed as input variables to TSEB-PT. All analyses were conducted at different pixelation of the UAV data to quantify the effect of spatial resolution on the performance. The 1 m spatial resolution produced the highest correlation between Tr modelled by TSEB-PT and measured by sap flow sensors (R2 = 0.80), which was comparable to the 0.06, 0.1, 0.5 and 2 m pixel sizes (R2 = 0.76-0.78) and markedly higher than the lower resolutions of 2 to 24 m (R2 = 0.30-0.72). Modelled Tr was highly and significantly correlated with measured leaf water potential (R2 = 0.81) and stomatal conductance (R2 = 0.74). The computed irrigation requirements (IRs) reflected the field irrigation treatments, ET and conventional irrigation practices in the area with high accuracy. It was also found that using a net primary production model with explicit representation of temperature influences made it possible to distinguish effects of drought vis-a-vis heat stress on crop productivity and water use efficiency. The results showed excellent model performance for retrieving Tr and ET dynamics under drought stress and proved that the proposed remote sensing based TSEB-PT framework at UAV scale is a promising tool for the investigation of plant drought stress and water demand; this is particularly relevant for local and regional irrigations scheduling

    Accurate estimates of land surface energy fluxes and irrigation requirements from UAV-based thermal and multispectral sensors

    Get PDF
    The two-source energy balance model estimates canopy transpiration (Tr) and soil evaporation (E) traditionally from satellite partitions of remotely sensed land surface temperature (LST) and the Priestley-Taylor equation (TSEB-PT) at seasonal time with limited accuracy. The high spatial–temporal resolution spectral data collected by unmanned aerial vehicles (UAVs) provide valuable opportunity to estimate Tr and E precisely, improve the understanding of the seasonal and the diurnal cycle of evapotranspiration (ET), and timely detect agricultural drought. The UAV data vary in spatial resolution and the uncertainty imposed on the TSEB-PT outcome has thus far not being considered. To address these challenges and prospects, a new energy flux modelling framework based on TSEB-PT for high spatial resolution thermal and multispectral UAV data is proposed in this paper. Diurnal variations of LST in agricultural fields were recorded with a thermal infrared camera installed on an UAV during drought in 2018 and 2019. Observing potato as a test crop, LST, plant biophysical parameters derived from corresponding UAV multispectral data, and meteorological forcing variables were employed as input variables to TSEB-PT. All analyses were conducted at different pixelation of the UAV data to quantify the effect of spatial resolution on the performance. The 1 m spatial resolution produced the highest correlation between Tr modelled by TSEB-PT and measured by sap flow sensors (R2 = 0.80), which was comparable to the 0.06, 0.1, 0.5 and 2 m pixel sizes (R2 = 0.76–0.78) and markedly higher than the lower resolutions of 2 to 24 m (R2 = 0.30–0.72). Modelled Tr was highly and significantly correlated with measured leaf water potential (R2 = 0.81) and stomatal conductance (R2 = 0.74). The computed irrigation requirements (IRs) reflected the field irrigation treatments, ET and conventional irrigation practices in the area with high accuracy. It was also found that using a net primary production model with explicit representation of temperature influences made it possible to distinguish effects of drought vis-a-vis heat stress on crop productivity and water use efficiency. The results showed excellent model performance for retrieving Tr and ET dynamics under drought stress and proved that the proposed remote sensing based TSEB-PT framework at UAV scale is a promising tool for the investigation of plant drought stress and water demand; this is particularly relevant for local and regional irrigations scheduling.info:eu-repo/semantics/publishedVersio

    Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information

    Get PDF
    The estimation accuracy of plant dry matter by spectra- or remote sensing-based methods tends to decline when canopy coverage approaches closure; this is known as the saturation problem. This study aimed to enhance the estimation accuracy of plant dry matter and subsequently use the critical nitrogen dilution curve (CNDC) to diagnose N in Choy Sum by analyzing the combined information of canopy imaging and plant height. A three-year experiment with different N levels (0, 25, 50, 100, 150, and 200 kg center dot ha(-1)) was conducted on Choy Sum. Variables of canopy coverage (CC) and plant height were used to build the dry matter and N estimation model. The results showed that the yields of N-0 and N-25 were significantly lower than those of high-N treatments (N-50, N-100, N-150, and N-200) for all three years. The variables of CC x Height had a significant linear relationship with dry matter, with R-2 values above 0.87. The good performance of the CC x Height-based model implied that the saturation problem of dry matter prediction was well-addressed. By contrast, the relationship between dry matter and CC was best fitted by an exponential function. CNDC models built based on CC x Height information could satisfactorily differentiate groups of N deficiency and N abundance treatments, implying their feasibility in diagnosing N status. N application rates of 50-100 kgN/ha are recommended as optimal for a good yield of Choy Sum production in the study region

    Using crop intercepted solar radiation and vegetation index to estimate dry matter yield of Choy Sum

    Get PDF
    An accurate assessment of vegetable yield is essential for agricultural production and management. One approach to estimate yield with remote sensing is via vegetation indices, which are selected in a statistical and empirical approach, rather than a mechanistic way. This study aimed to estimate the dry matter of Choy Sum by both a causality-guided intercepted radiation-based model and a spectral reflectance-based model and compare their performance. Moreover, the effect of nitrogen (N) rates on the radiation use efficiency (RUE) of Choy Sum was also evaluated. A 2-year field experiment was conducted with different N rate treatments (0 kg/ha, 25 kg/ha, 50 kg/ha, 100 kg/ha, 150 kg/ha, and 200 kg/ha). At different growth stages, canopy spectra, photosynthetic active radiation, and canopy coverage were measured by RapidScan CS-45, light quantum sensor, and camera, respectively. The results reveal that exponential models best match the connection between dry matter and vegetation indices, with coefficients of determination (R2) all below 0.80 for normalized difference red edge (NDRE), normalized difference vegetation index (NDVI), red edge ratio vegetation index (RERVI), and ratio vegetation index (RVI). In contrast, accumulated intercepted photosynthetic active radiation (Aipar) showed a significant linear correlation with the dry matter of Choy Sum, with root mean square error (RMSE) of 9.4 and R2 values of 0.82, implying that the Aipar-based estimation model performed better than that of spectral-based ones. Moreover, the RUE of Choy Sum was significantly affected by the N rate, with 100 kg N/ha, 150 kg N/ha, and 200 kg N/ha having the highest RUE values. The study demonstrated the potential of Aipar-based models for precisely estimating the dry matter yield of vegetable crops and understanding the effect of N application on dry matter accumulation of Choy Sum

    Feasibility of delta radiomics–based pCR prediction for rectal cancer patients treated with magnetic resonance–guided adaptive radiotherapy

    Get PDF
    Magnetic resonance–guided adaptive radiotherapy (MRgART) represents the latest frontier in precision radiotherapy. It is distinguished from other modalities by the possibility of acquiring high-contrast soft tissue images, combined with the ability to recalculate and re-optimize the plan on the daily anatomy. The extensive database of available images offers ample scope for using disciplines such as radiomics to try to correlate features and outcomes. This study aimed to correlate the change of radiomics feature along the treatment to pathological complete response (pCR) for locally advanced rectal cancer (LARC) patients. Twenty-eight LARC patients undergoing neoadjuvant chemoradiotherapy (nCRT) with a short course (25 Gy, 5 Gy × 5f) MRgART at 1.5 Tesla MR-Linac were enrolled. The T2-weighted images acquired at each fraction, corresponding target delineation, pCR result of the surgical specimen, and clinical variables were collected. Seven families of features [First Order, Shape, Gray-level Co-occurrence Matrix (GLCM), Gray-level Dependence Matrix (GLDM), Gray-level Run Length Matrix (GLRLM), Gray-level Size Zone Matrix (GLSZM), and Neighborhood Gray Tone Difference Matrix (NGTDM)] were extracted, and delta features were calculated from the ratio of features of each successive fraction to those of the first fraction. Mann-Whitney U test and LASSO were utilized to reduce the dimension of features and select those features that are most significant to pCR. At last, the radiomics signatures were established by linear regression with the final set of features and their coefficients. A total of 581 radiomics features were extracted, and 2,324 delta features were calculated for each patient. Nineteen features and delta features, and one clinical variable (cN) were significant (p< 0.05) to pCR; seven predictive features were further selected and included in the linear regression to construct the radiomics signature significantly discriminating pCR and non-pCR groups (p< 0.05). Delta features based on MRI images acquired during a short course MRgART could potentially be used to predict treatment response in LARC patients undergoing nCRT
    • …
    corecore