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Churong Li1, Bin Tang1* and Lucia Clara Orlandini 1

1Radiation Oncology Department Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of
University of Electronic Science and Technology of China, Sichuan Clinical Research Center for
Cancer, Chengdu, China, 2School of Medicine, University of Electronic Science and Technology of
China, Chengdu, China, 3Clinical Medical College, Chengdu University of Traditional Chinese
Medicine, Chengdu, China
Magnetic resonance–guided adaptive radiotherapy (MRgART) represents the

latest frontier in precision radiotherapy. It is distinguished from other

modalities by the possibility of acquiring high-contrast soft tissue images,

combined with the ability to recalculate and re-optimize the plan on the daily

anatomy. The extensive database of available images offers ample scope for

using disciplines such as radiomics to try to correlate features and outcomes.

This study aimed to correlate the change of radiomics feature along the

treatment to pathological complete response (pCR) for locally advanced rectal

cancer (LARC) patients. Twenty-eight LARC patients undergoing neoadjuvant

chemoradiotherapy (nCRT) with a short course (25 Gy, 5 Gy × 5f) MRgART at 1.5

Tesla MR-Linac were enrolled. The T2-weighted images acquired at each

fraction, corresponding target delineation, pCR result of the surgical specimen,

and clinical variables were collected. Seven families of features [First Order,

Shape, Gray-level Co-occurrence Matrix (GLCM), Gray-level Dependence Matrix

(GLDM), Gray-level Run Length Matrix (GLRLM), Gray-level Size Zone Matrix

(GLSZM), and Neighborhood Gray Tone Difference Matrix (NGTDM)] were

extracted, and delta features were calculated from the ratio of features of each

successive fraction to those of the first fraction. Mann-Whitney U test and LASSO

were utilized to reduce the dimension of features and select those features that

are most significant to pCR. At last, the radiomics signatures were established by

linear regression with the final set of features and their coefficients. A total of 581

radiomics features were extracted, and 2,324 delta features were calculated for

each patient. Nineteen features and delta features, and one clinical variable (cN)

were significant (p< 0.05) to pCR; seven predictive features were further selected

and included in the linear regression to construct the radiomics signature
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significantly discriminating pCR and non-pCR groups (p< 0.05). Delta features

based on MRI images acquired during a short course MRgART could potentially

be used to predict treatment response in LARC patients undergoing nCRT.
KEYWORDS

delta radiomics, pathological complete response, rectal cancer, MRgART, neoadjuvant
chemoradiotherapy, MR-Linac
Introduction

Colon-rectum cancer ranks as the second leading cause of cancer-

related mortality worldwide (1, 2), representing approximately 9.4%

(935,173) of all new cancer cases. Currently, the standard treatment

approach for locally advanced rectal cancer (LARC) involves

neoadjuvant radiochemotherapy (nCRT), followed by total

mesorectal excision (TME) (3–7). nCRT induces a pathological

complete response (pCR) in approximately 11%–42% of LARC

patients (8). Extensive research has demonstrated that patients

achieving pCR generally experience a more favorable prognosis,

characterized by a reduced risk of local failure, lower propensity for

local or distant recurrence, improved overall survival, and metastasis-

free survival (9, 10). Recent studies have proposed conservative

treatment strategies for patients who achieve clinical complete

response (cCR) after nCRT, such as local excision or Watch and

Wait (W&W), aiming to minimize morbidity and long-term effects

associated with unnecessary TME surgery on anorectal and sexual

function (11, 12). However, the concept of cCR remains

controversial, as it relies on the absence of detectable tumor during

clinical and radiological re-evaluation following nCRT. Notably,

some research found all patients with pCR also exhibit cCR, not all

patients with cCR achieve pCR (13); nevertheless, other studies found

different results showing that 61.3% of patients with a pCR had

evidence of non-cCR (14). Therefore, early identification of patients

who will achieve pCR before TME surgery has become increasingly

vital for their accurate multidisciplinary management and remains a

topic of ongoing research. Radiomics is an emerging field that

includes the extraction of concealed data from medical images and

the development of the classification model by machine learning or

deep learning techniques. This field aims to provide diagnostic and

prognostic insights by detecting features of the tumor or healthy

tissue that may not be easily discernible through visual examination

(15, 16). Radiomics encompasses the extraction and analysis of spatial

layout and geometric shape across various imaging techniques,

including computed tomography (CT), magnetic resonance (MR),

and positron emission tomography (PET) (17–20). Leveraging these

characteristics, numerous studies (21–29) have employed radiomics

based on clinical medical images to predict pCR or cCR in LARC,

facilitating accurate diagnosis and appropriate treatment selection for

patients. Magnetic resonance imaging (MRI) serves as the gold

standard in rectal cancer diagnosis, delivering excellent soft tissue

contrast and high spatial resolution for assessing LARC response

(30). Consequently, several radiomics approaches have been applied
02
to MRI, enabling the prediction of pCR or cCR response to nCRT

(22, 31), long-term survival in LARC patients (32), and recognition of

different stages of rectal cancer (33). In addition to classical

radiomics, delta radiomics is also gaining ground (34); compared to

radiomics, which is based on clinical images acquired at a single time

point, delta radiomics studies the temporal variation of radiomic

features extracted from a dataset of images acquired throughout the

treatment. Multiple studies have proposed delta radiomics as an

alternative approach for predicting treatment response, tumor

prognosis, toxicity, and treatment guidance across various cancer

types (35–41). In the specific field of LARC patients, delta radiomics

has been proven effective in predicting the response of metastatic

renal cell cancer and colorectal cancer liver metastases to

chemotherapies (36, 42), cCR or pCR after nCRT (8, 43), disease-

free overall survival (44). To the best of our knowledge, the

application of delta radiomics based on MR-Linac imaging to

predict pCR in LARC patients undergoing a short course of

radiotherapy (SCRT) has not been explored previously.

Our study is focused on the treatment of LARC patients treated

at 1.5 Tesla Magnetic Resonance Linac (MR-Linac). The use of such

a hybrid machine enables a precise magnetic resonance-guided

adaptive radiotherapy (MRgART) (45) by the acquisition of

diagnostic-quality MRI scans before each daily fraction,

facilitating accurate dose delivery, hypo-fractionated dose

escalation to the tumor, and improving local control rates with

reduced toxicity rates. Importantly, via the use of an MR-Linac, we

can collect multiple MRI images throughout the treatment process

and, therefore, there is ample room for delta radiomics analysis.

This study aims to predict the response of LARC patients

undergoing a SCRT with a 1.5 Tesla MR-Linac. Specifically, we

aim to assess the feasibility of using delta radiomics as a predictive

tool to determine pCR of LARC patients after nCRT. By

investigating the potential of delta radiomics, this research strives

to enhance patient management and treatment outcomes.
Materials and methods

Patients

This retrospective study includes a cohort of 28 patients

diagnosed with pathologically confirmed LARC. Specifically,

patients with clinical stage T3-4N0 or T3-4N1-2 who received

MRgART using a 1.5 Tesla MR-Linac were included in this
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retrospective study. To maintain the study’s focus, exclusion criteria

comprised patients with distant metastases, a history of prior

chemotherapy or radiotherapy for rectal cancer, concurrent or

previous malignancies, and individuals with known allergies to

intravenous contrast agents or contraindications to MRI. This

study was approved by the Institutional Ethics Committee of

our hospital.
Patient clinical workflow

Patients underwent a SCRT followed after one week by

chemotherapy, then evaluated as cCR or non-cCR according to

the criteria described in the next section. In the absence of cCR,

surgery was scheduled, otherwise, patients followed the W&W

strategy with close follow-up consisting of regular restaging by

MRI and digital rectal examination.

SCRT was administered over 1 week delivering 25 Gy in 5 Gy

per fraction. Each treatment fraction starts with the acquisition of

an online MRI used for the plan adaptation. The pre-treatment CT

reference image, contours, and plan, together with the daily online

MRI are used as input to adapt the plan for that specific session. The

reference image is matched with the online MRI through rigid

registration, then the workflow proceeds with an adapt to shape

(ATS) approach based on the new patient anatomy; target and

organs at risk were adapted to the daily anatomy using deformable

registration with normalized mutual information of Monaco

(Elekta AB, Stockholm, Sweden) v.5.4, and then manually

adjusted (if needed) by the radiation oncologist. The CT reference

treatment plan includes all the information needed to generate the

synthetic CT (sCT) including average electron density and a given

layering priority for each contour; the adapted plan is then

recalculated on the daily MR-based sCT.

Chemotherapy was administered for 12 weeks, comprising six

cycles of mFOLFOX6 regimen. This regimen involved intravenous

administration of Oxaliplatin (85 mg/m2) and folinic acid (400 mg/

m2) on day 1, intravenous push of 5-fluorouracil (400 mg/m2) on

day 1, and continuous intravenous pumping of 5-fluorouracil (2400

mg/m2) over 46h–48h, repeated every 14 days.

TME surgery was performed through either anterior resection

or abdominoperineal resection, depending on the individual

patient’s requirements and circumstances.
cCR and pCR evaluation criteria

In this study, a patient was considered as cCR when the

following criteria were fulfilled: absence of lymph nodes on

restaging MRI imaging, no residual primary tumor evident on

morphological and diffusion-weighted imaging with intact rectal

wall layers, absence of detectable mass during manual rectal

examination, and no residual lesions or presence of a flat scar

during endoscopic examination.

The pathologic staging was determined following the tumor

node metastasis (TNM) classification system, recommended by the

American Joint Committee on Cancer (AJCC), 8th edition (46).
Frontiers in Oncology 03
Histopathological examination of surgically resected specimens was

performed by two pathologists with 10 years of experience in rectal

tumor pathology who were blinded to the MRI data. Tumor

response to nCRT was classified using the tumor regression grade

(TRG) classification system proposed by Mandard et al. (47).

Specifically, patients were categorized as pCR if TRG = 1, or non-

pCR if TRG > 1.
Imaging dataset and feature extraction

Patient’s MR images acquired with the 1.5 Tesla MR scanner at

Unity MR-Linac during the online adaptive clinical workflow were

used for features extraction. The routine scanning protocol consists of

3D-T2-weighted transversal sequences, with image resolution of 0.83

mm × 0.83 mm, slice thickness of 1.5 mm, and acquisition time of

117 s. For each patient, a total of five MR scans, corresponding to

fractions 1 to 5, were included in the analysis. Each MRI image was

normalized using Z-score normalization method. In addition, to

address the issue of high-frequency MRI signal noise and mitigate

the impact of significant signal variation, the Laplacian of Gaussian

(LoG) filters were applied to rawMRI images. The LoG filters utilized

a range of standard deviations (s) from 0.2 to 1.0 mm, with a step size

of 0.2 mm. The calculation is as follows:

LoG(x, y) = −
1

ps4 1 −
x2 + y2

2s2

� �
e−

x2+y2

2s2

The segmentation of the gross tumor volume (GTV) used for

features extraction is obtained at the daily plan adaptation using

first the deformable registration module of Monaco treatment

planning system and then a slice-by-slice manual adjustment by

the radiation oncologist. The radiomics analysis was focused on the

whole GTV volume for each of the five fractions. GTV delineation

for a representative patient along the treatment course is shown

in Figure 1.

Seven families of radiomics features, including First Order,

Shape, GLCM, GLDM, GLRLM, GLSZM, and NGTDM, were

extracted from both the raw images and the LoG-filtered images.

In order to capture changes in the features throughout the

treatment, the delta features (DF) were calculated as the ratio of

the features acquired at fractions 2–5 (F2–F5) to the corresponding

features at fraction 1 (F1) as follows, resulting in four datasets (DF2,
DF3, DF4, and DF5). Additionally, three potential clinical variables,
namely clinical T-stage (cT), clinical N-stage (cN), and age, were

also collected for subsequent analysis.

DFi = Fi=F1

Where F1 represents the feature extracted from MRI of the first

fraction, F1 is the features from MRI of ith fraction.
Feature selection and radiomics signature

Firstly, the Mann-Whitney U test was employed to identify

potential predictive features (p< 0.05) capable of discriminating

between patients showing pCR and non-pCR. The test
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was applied to features, delta features extracted and on the three

clinical variables (cN, cT, and age of the patient).

To further reduce the dimensionality of the feature set, the least

absolute shrinkage and selection operator (LASSO) was utilized to

select the most significant features; the regularization process

shrinks the coefficients associated with each variable toward zero,

thus retaining only the most relevant features while discarding the

less important ones. This was achieved by increasing the

regularization factor l and applying the leave-one-out cross-

validation (LOOCV) to determine the optimal set of features.

Ultimately, the features and their corresponding coefficients that

yielded the lowest “Binomial Deviance” in LASSO were used to

construct the radiomics signature (Rad-score) as follows:

Rad − score =o
n

i
CiXi + b

Where n is the number of features, Xi and Ci are the ith feature

and their corresponding coefficients, and b is the intercept.
Statistical analysis

The MRI images were preprocessed in a Python environment,

and features extraction was performed using the PyRadiomics

V3.0.1 Python package. Subsequently, the Mann-Whitney U test

of the image features, LASSO regression, and evaluation were

conducted using R statistical software (version 3.6.1, R

Foundation for Statistical Computing, Vienna, Austria).
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Results

Patients and treatment characteristics

The median age of the 28 patients included in this study was

52.5 years with a higher proportion of males than females (78.6% vs.

21.4%, respectively). Among the patients enrolled, 26 (92.9%) were

identified as non-cCR patients and underwent TME surgery at the

end of chemotherapy. Of the two cCR patients (7.1%), one

remained cCR for 22 weeks after the end of nCRT and then

tumor recurrence was detected and underwent surgery; the

second one, 45 weeks after the end of nCRT was still cCR at the

time of the study, so no pCR information was available. By the end,

27 patients had already undergone surgery and histopathological

examination revealed that five of them (18.5%) were pCR. For this

radiomics study, 135 MRI datasets and corresponding GTV

segmentations of 27 of the 28 LARC patients treated with

MRgART at Unity MR-Linac for a SCRT from August 2021 to

date were analyzed. The clinical characteristics and response to

treatment of the patients are summarized in Table 1.
Features selection

A total of 581 features were extracted from each MRI image,

including 111 features from the raw image and 470 features from

the LoG-filtered images. As for delta features, a total of 2,324 delta

features were calculated from the 581 features of each of the four

fractions following the first.
FIGURE 1

Gross tumor volume delineation (in red) on sagittal planes for the five ((A–E), respectively) MRgART fractions of a representative SCRT.
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The Mann-Whitney U test revealed that 18 variables had a

significant association with pCR (p< 0.05). These variables included

six features, one clinical variable (cN), and 11 delta features (six

delta features at second fraction, four delta features at third fraction,

one delta feature at fourth fraction). No significant delta features

were found at fifth fraction. A standard deviation of 0.2 mm or 0.4

mm of the LoG-filtered images contributed to the extraction of

significant features; the results obtained are shown in Table 2.

Using LASSO regression, the dimension of the 18 variables was

further reduced, thus retaining only the most relevant features and

discarding the less important ones. Figure 2 illustrates the reduction

in feature dimensionality for increasing values of Lambda. The

binomial deviance of the LASSO regression varies with the

regularization parameter lambda. The optimal lambda value

(L.min) of 0.0245 was obtained when the LASSO regression

achieved the lowest binomial deviance using LOOCV validation

as shown in Figure 3.

With this optimal lambda value, 11 features had a zero

coefficient in the LASSO regression and were eliminated; of the

seven remaining ones, we obtained one clinical variable (cN), one

feature from first fraction, four delta features at second fraction, and

one delta feature at third fraction, respectively. The final set of

significant features and the corresponding coefficients to construct

the rad score for patients are listed in Table 3. The distributions of

all final predictive features characterising the pCR and non-pCR

patient groups are shown in Figure 4.
Radiomics signature

With the seven variables and their corresponding coefficients,

the Rad-Score for each patient was constructed by LASSO

regression. Figure 5 shows that the Rad-Score can significantly

discriminate pCR and non-pCR patients (p< 0.05).
TABLE 1 Patient clinical and treatment characteristics.

Patient number 28

Age – yr.

Median 52.5

Range 32–71

Sex – no. (%)

Male 22 (78.6)

Female 6 (21.4)

Tumour stage – no. (%)

T3 23 (82.1)

T4 5 (17.9)

N0 3 (10.7)

N1 16 (57.1)

N2 9 (32.2)

cCR

Patient number (%) 2 (7.1)

Interval end CRT- cCR pt1 (weeks) 22

Interval end CRT- cCR pt2 (weeks) Ongoing still cCR at 45 weeks

Non-cCR

Patient number (%) 26 (92.9)

Interval-end CRT surgery weeks median range 5.0 (0.1–8.9)

pCR

Patient number (%) 5 (18.5)

Non-pCR

Patient number (%) 22(81.5)
TABLE 2 Features, delta features, and clinical variable significant (p< 0.05) to pCR.

Features s of LoG
(mm)

p value

Name Class F1 DF2 DF3 DF4 DF5

cN Clinical – 0.048 – – – –

Zone entropy GLSZM 0.2 0.023

Gray-level variance GLRLM 0.2 0.033

Compactness 1 Shape – 0.047

Sphericity Shape – 0.047

Spherical disproportion Shape – 0.047

Gray-level non-uniformity normalized GLRLM 0.2 0.047

Range First Order – 0.008

Gray-level non-uniformity normalized GLSZM – 0.006

Gray-level variance GLSZM – 0.002

(Continued)
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Discussion

Artificial Intelligence has gained significant attention in recent

years for its potential contribution to achieving full-personalized

medicine (48); in the treatment of cancer patients, its role is

fundamental throughout the whole process, not only to

automatize and speed up the segmentation process, to set up

automatic prediction models for the gamma passing rate of the

patient’s treatment plan (49, 50), but also in the massive use and

analysis of diagnostic imaging to elaborate predictive models for

patient’s outcomes. In the management of LARC, personalized

medicine is essential; the W&W approach is considered a

favorable option for patients assessed as cCR after nCRT to avoid

morbidity and toxicity associated with unnecessary surgery.

However, the definitive determination of residual tumors relies on

the evaluation of resected specimens. Therefore, the ability to

predict pCR without the need for an actual total TME procedure

would greatly facilitate the personalized treatment approach.

Patients predicted to achieve pCR based on reliable models would

have a stronger rationale to choose the W&W strategy, whereas
Frontiers in Oncology 06
those anticipated as non-pCR cases may contemplate additional

medical interventions, such as consolidation chemotherapy and/or

radiotherapy boost.

Delta radiomics is developed upon conventional radiomics

analysis while taking the variation of features throughout the

treatment process into consideration. Since radiomics features

before or after treatment are not sufficient to describe all

characteristics of tumor, the delta radiomics approach might be

potentially more powerful for prognostic purposes. MRgART

workflow at MR-Linac provides favorable resources for delta

radiomics study because multiple MRI images are available for

each radiotherapy fraction.

In this study, the delta radiomics approach using the Mann-

Whitney U test, Pearson coefficient analysis and LASSO regression

was applied to construct the radiomics signature, to identify pCR in

a cohort of LARC patients treated in a SCRT at 1.5 Tesla MR.

Finally, one original feature and five delta features are selected as the

final predictors. Our finding suggests that delta features have the
FIGURE 2

Features dimensionality reduction for increasing values of lambda in
LASSO regression.
FIGURE 3

Optimal lambda value determination by minimization of the
binomial deviance. The optimal lambda value and corresponding
dimension of predictive features with non-zero coefficients are
highlighted by the vertical dotted line.
TABLE 2 Continued

Features s of LoG
(mm)

p value

Name Class F1 DF2 DF3 DF4 DF5

High gray-level zone emphasis GLSZM – 0.006

Small area high gray-level emphasis GLSZM – 0.005

Busyness NGTDM – 0.006

Median First Order 0.2 0.049

Cluster shade GLCM 0.2 0.047

Gray-level non-uniformity GLSZM 0.2 0.002

Size zone non-uniformity GLSZM 0.2 0.013

Gray-level non-uniformity GLSZM 0.4 0.023
frontier
F1, feature at fraction 1; DFi, delta feature at fraction i; s, standard deviation of the LoG-filtered images.
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potential to be powerful predictors of pCR for LARC. Other studies

also found the potential of delta radiomics when applied to various

clinical end points for LARC patients. Boldrini et al. also found that

delta features have better discrimination ability than standard

radiomics features, even if their study is conducted on the

prediction of cCR for LARC. Chiloiro et al. (44) found that the

change of area/surface ratio is most significant in identifying 2-year-

DFS for LARC. Shayesteh et al. (43) also proved that their delta

radiomics model outperformed both pre- and post-treatment

features in pCR prediction.

Repeatability and generalization are major concerns in

radiomics studies, particularly for delta radiomics studies;

heterogeneity in the acquisition of images and timing are

important factors to consider (8, 39, 41, 44, 51–54). Those facts

might limit the transferability of the results. In our study, delta

radiomics analysis was based on MRI from an MR-Linac, allowing

reproducibility of the MRI sequences used during the treatment

itself and a timing that is guided by the treatment delivery days, and
Frontiers in Oncology 07
therefore easily reproducible within the same center, and hopefully

for multicenter studies (8, 37).

The study is subject to limitations. The number of patients

enrolled is too small to set up a fine-tuned prediction model; there

is difficulty in performing internal and external validations,

reflecting the limited number of LARC patients treated with the

relatively new MRgART technique. Moreover, considering that, for

each patient, the MRI images were acquired during the SCRT over 1

week, the change in tumor heterogeneity and texture might not be

fully exhibited; thus, the change of features might be still

conservative. Despite these limitations, the study is the first to

investigate and highlight the feasibility of using delta radiomics with

promising prediction results on MR-Linac in SCRT schedule for

LARC. For a more comprehensive delta radiomics study, future

works are under design to include in the analysis one or more MRIs

at the end of the SCRT, the continuous updating of the case history,

and including internal and external validations as soon as

numbers allow.
TABLE 3 The optimal set of features and corresponding coefficients used to construct the rad score for patients.

Feature s of LoG
(mm)

Coefficients
Name Class Delta category

cN Clinical – – −0.184

Zone entropy GLSZM F1 0.2 −0.564

Gray-level variance GLSZM DF2 – 0.058

High gray-level zone emphasis GLSZM DF2 – 0.462

Small area high gray-level emphasis GLSZM DF2 – 0.216

Range First order DF2 0.2 0.139

Gray-level non-uniformity GLSZM DF3 0.2 −0.748
F1, feature at fraction 1; DFi, delta feature at fraction i; s, standard deviation of the LoG-filtered images.
FIGURE 4

The distributions of the final predictive features and delta features characterizing the pCR and non-pCR patient group. The lower and upper borders
of the box indicate the 25th and 75th percentile of the data, respectively, while the whiskers indicate the fifth and 95th percentile of the data.
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Conclusion

Delta features approach based on MRI images acquired during

MRgART at MR-Linac could potentially be used for treatment

response prediction in LARC patients undergoing nCRT

with SCRT.
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