33,883 research outputs found

    Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain

    Full text link
    Electronic structures of wurtzite GaAs nanowires in the [0001] direction were studied using first-principles calculations. It was found that the band gap of GaAs nanowires experience a direct-to-indirect transition when the diameter of the nanowires is smaller than ~28 {\AA}. For those thin GaAs nanowires with an indirect band gap, it was found that the gap can be tuned to be direct if a moderate external uniaxial strain is applied. Both tensile and compressive strain can trigger the indirect-to-direct gap transition. The critical strains for the gap-transition are determined by the energy crossover of two states in conduction bands.Comment: 4 pages, 4 figure

    In-medium Properties of Θ+\Theta^{+} as a Kπ\piN structure in Relativistic Mean Field Theory

    Full text link
    The properties of nuclear matter are discussed with the relativistic mean-field theory (RMF).Then, we use two models in studying the in-medium properties of Θ+\Theta^+: one is the point-like Θ\Theta^* in the usual RMF and the other is a Kπ\piN structure for the pentaquark. It is found that the in-medium properties of Θ+\Theta^+ are dramatically modified by its internal structure. The effective mass of Θ+\Theta^+ in medium is, at normal nuclear density, about 1030 MeV in the point-like model, while it is about 1120 MeV in the model of Kπ\piN pentaquark. The nuclear potential depth of Θ+\Theta^+ in the Kπ\piN model is approximately -37.5 MeV, much shallower than -90 MeV in the usual point-like RMF model.Comment: 8 pages, 5 figure

    The properties of kaonic nuclei in relativistic mean-field theory

    Full text link
    The static properties of some possible light and moderate kaonic nuclei, from C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state binding energies of KK^- are in the range of 739673\sim 96 MeV and 226322\sim 63 MeV, respectively. The binding energies of 1p states increase monotonically with the nucleon number A. The upper limit of the widths are about 42±1442\pm 14 MeV for the 1s states, and about 71±1071\pm 10 MeV for the 1p states. The lower limit of the widths are about 12±412\pm 4 MeV for the 1s states, and 21±321\pm 3 MeV for the 1p states. If V030V_{0}\leq 30 MeV, the discrete KK^- bound states should be identified in experiment. The shrinkage effect is found in the possible kaonic nuclei. The interior nuclear density increases obviously, the densest center density is about 2.1ρ02.1\rho_{0}.Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo

    A discussion of the scaling effect in numerical simulation of the extrusion process

    Get PDF
    The main objective of the work of this paper is to study the possibility of using a small scale geometrical model in the numerical simulation of aluminium extrusion. The advantages and shortcomings of the application of the geometrically similar model in FEM simulation are discussed. Thermal – mechanical and metallurgical combined simulations are performed within two tests using geometrically similar models and assessment is made in terms of mechanical and material properties. It was found that small scale simulation could not reproduce most of the important forming parameters of the original process, although it could help to bring about significant savings in computation time
    corecore