35,945 research outputs found
Variational calculations for resonance oscillations of inhomogeneous plasmas
The electrostatic resonance properties of an inhomogeneous plasma column are reported by application of the Rayleigh-Ritz method. A description of the rf equation of motion and pressure term that expresses the system of equations in Euler-Lagrange form is presented. The Rayleigh-Ritz procedure is applied to the corresponding Lagrangian to obtain approximate resonance frequencies and eigenfunctions. An appropriate set of trial coordinate functions is defined, which leads to frequency and eigenfunction estimates
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
Magnitude and Sign Correlations in Heartbeat Fluctuations
We propose an approach for analyzing signals with long-range correlations by
decomposing the signal increment series into magnitude and sign series and
analyzing their scaling properties. We show that signals with identical
long-range correlations can exhibit different time organization for the
magnitude and sign. We find that the magnitude series relates to the nonlinear
properties of the original time series, while the sign series relates to the
linear properties. We apply our approach to the heartbeat interval series and
find that the magnitude series is long-range correlated, while the sign series
is anticorrelated and that both magnitude and sign series may have clinical
applications.Comment: 4 pages,late
Unsteady disturbances in a swept wing boundary layer due to plasma forcing
This work investigates the response of a transitional boundary layer to spanwise-invariant dielectric barrier discharge plasma actuator (PA)
forcing on a 45 swept wing at a chord Reynolds number of 2:17 106. Two important parameters of the PA operation are scrutinized,
namely, the forcing frequency and the streamwise location of forcing. An array of passive discrete roughness elements is installed near the
leading edge to promote and condition a set of critical stationary crossflow (CF) instability modes. Numerical solutions of the boundary layer
equations and linear stability theory are used in combination with the experimental pressure distribution to provide predictions of critical
stationary and traveling CF instabilities. The laminar–turbulent transition front is visualized and quantified by means of infrared thermography. Measurements of velocity fields are performed using hotwire anemometry scans at specific chordwise locations. The results demonstrate
the inherent introduction of unsteady velocity disturbances by the plasma forcing. It is shown that, depending on actuator frequency and
location, these disturbances can evolve into typical CF instabilities. Positive traveling low-frequency type III modes are generally amplified by
PA in all tested cases, while the occurrence of negative traveling high-frequency type I secondary modes is favored when PA is operating at
high frequency and at relatively downstream locations, with respect to the leading edg
Pupillometry, a bioengineering overview
The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented
Attosecond Precision Multi-km Laser-Microwave Network
Synchronous laser-microwave networks delivering attosecond timing precision
are highly desirable in many advanced applications, such as geodesy,
very-long-baseline interferometry, high-precision navigation and
multi-telescope arrays. In particular, rapidly expanding photon science
facilities like X-ray free-electron lasers and intense laser beamlines require
system-wide attosecond-level synchronization of dozens of optical and microwave
signals up to kilometer distances. Once equipped with such precision, these
facilities will initiate radically new science by shedding light on molecular
and atomic processes happening on the attosecond timescale, such as
intramolecular charge transfer, Auger processes and their impact on X-ray
imaging. Here, we present for the first time a complete synchronous
laser-microwave network with attosecond precision, which is achieved through
new metrological devices and careful balancing of fiber nonlinearities and
fundamental noise contributions. We demonstrate timing stabilization of a
4.7-km fiber network and remote optical-optical synchronization across a 3.5-km
fiber link with an overall timing jitter of 580 and 680 attoseconds RMS,
respectively, for over 40 hours. Ultimately we realize a complete
laser-microwave network with 950-attosecond timing jitter for 18 hours. This
work can enable next-generation attosecond photon-science facilities to
revolutionize many research fields from structural biology to material science
and chemistry to fundamental physics.Comment: 42 pages, 13 figure
- …