55 research outputs found

    Investigating the SRC kinase HCK functions in Chronic Myelogenous Leukemia using chemical genetics methods.

    Get PDF
    The hallmark of chronic myelogenous leukemia (CML) is a chromosomal translocation between the c-abl gene (chromosome 9) and the bcr gene (chromosome 22). This event gives rise to BcrAbl, a chimeric protein with constitutive tyrosine kinase activity that drives the pathogenesis of the disease. Imatinib, a Bcr-Abl kinase inhibitor is the frontline therapy in CML. Although imatinib is very effective in the chronic phase of CML, patients in advanced stages develop resistance. An increased understanding of the signaling pathways implicated in CML pathogenesis and imatinib resistance is critical to the development of improved therapies. Previous work in our laboratory found that A-419259, a broad-spectrum Src family kinase (SFK) inhibitor induces growth arrest and apoptosis in CML cells, suggesting that SFKs are required for Bcr-Abl transformation of myeloid progenitors. Additionally, Hck couples BcrAbl to Stat5 activation in myeloid cells, which may contribute to survival. Furthermore, studies on samples from some imatinib-resistant patients found increased expression and activity of Hck and Lyn. In this dissertation, using two chemical genetic methods, I addressed the contribution of Hck to Bcr-Abl signaling and imatinib resistance. To explore the individual contribution of Hck to Bcr-Abl signaling, I developed an A419259-resistant mutant of Hck (Hck-T338M). Expression of Hck-T338M fully protected K562 CML cells from A-419259-induced apoptosis, an effect that correlated with sustained Stat5 activation. In addition, the Hck-T338M partially protected CML cells against the growth inhibition induced by A-419259. These studies suggest that Hck plays a non-redundant role as a key downstream survival partner for Bcr-Abl.I also tested whether Hck overexpression was sufficient to induce imatinib resistance in CML cells. For this study, I developed a mutant of Hck (Hck-T338A) that is uniquely sensitive to NaPP1, an analog of the generic SFK inhibitor pyrrazolo-pyrimidine 1. Overexpression of Hck or Hck-T338A in K562 cells induced resistance to imatinib-dependent apoptosis and growth arrest. Furthermore, NaPP1 reversed imatinib resistance in K562-Hck-T338A cells, suggesting that Hck-induced imatinib resistance requires Hck kinase activity. Taken together, my work validates Hck as a target for the development of apoptosis-inducing drugs and that are likely to be effective in imatinib-resistant patients

    Development of a Population Pharmacokinetic Model To Describe Azithromycin Whole-Blood and Plasma Concentrations over Time in Healthy Subjects

    Get PDF
    ABSTRACT Azithromycin (AZI), a broad-spectrum antibiotic, accumulates in polymorphonuclear cells and peripheral blood mononuclear cells. The distribution of AZI in proinflammatory cells may be important to the anti-inflammatory properties. Previous studies have described plasma AZI pharmacokinetics. The objective of this study was to describe the pharmacokinetics of AZI in whole blood (concentration in whole blood [ C b ]) and plasma (concentration in plasma [ C p ]) of healthy subjects. In this study, 12 subjects received AZI (500 mg once a day for 3 days). AZI C b and C p were quantified in serial samples collected up to 3 weeks after the last dose and analyzed using noncompartmental and compartmental methods. After the last dose, C b was greater than C p . Importantly, C b , but not C p , was quantifiable in all but one subject at 3 weeks. The blood area under the curve during a 24-h dosing interval (AUC 24 ) was ∼2-fold greater than the plasma AUC 24 , but simulations suggested that C b was not at steady state by day 3. Upon exploration of numerous models, an empirical 3-compartment model adequately described C p and C b , but C p was somewhat underestimated. Intercompartmental clearance (CL; likely representing cells) was lower than apparent oral CL (18 versus 118 liters/h). Plasma, peripheral, and cell compartmental volumes were 439 liters, 2,980 liters, and 3,084 liters, respectively. Interindividual variability in CL was low (26.2%), while the volume of distribution variability was high (107%). This is the first report to describe AZI C b in healthy subjects, the distribution parameters between C p and C b , and AZI retention in blood for up to 3 weeks following 3 daily doses. The model can be used to predict C b from C p for AZI under various dosing regimens. (This study has been registered at ClinicalTrials.gov under registration no. NCT01026064.

    HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck

    Get PDF
    Background: Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK) strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results: To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the K mssssfor ATP as well as enhanced inhibitor potency. Conclusions: These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting. © 2012 Pene-Dumitrescu et al; licensee BioMed Central Ltd

    Phase I Study of the Novel Enhancer of Zeste Homolog 2 (EZH2) Inhibitor GSK2816126 in Patients with Advanced Hematologic and Solid Tumors.

    Full text link
    PURPOSE: Enhancer of zeste homolog 2 (EZH2) activity is dysregulated in many cancers. PATIENTS AND METHODS: This phase I study determined the safety, maximum-tolerated dose (MTD), pharmacokinetics, and pharmacodynamics of the intravenously administered, highly selective EZH2 inhibitor, GSK2816126, (NCT02082977). Doses of GSK2816126 ranged from 50 to 3,000 mg twice weekly, and GSK2816126 was given 3-weeks-on/1-week-off in 28-day cycles. Eligible patients had solid tumors or B-cell lymphomas with no available standard treatment regimen. RESULTS: Forty-one patients (21 solid tumors, 20 lymphoma) received treatment. All patients experienced ≥1 adverse event (AE). Fatigue [22 of 41 (53.7%)] and nausea [20 of 41 (48.8%)] were the most common toxicity. Twelve (32%) patients experienced a serious AE. Dose-limiting elevated liver transaminases occurred in 2 of 7 patients receiving 3,000 mg of GSK2816126; 2,400 mg was therefore established as the MTD. Following intravenous administration of 50 to 3,000 mg twice weekly, plasma GSK2816126 levels decreased biexponentially, with a mean terminal elimination half-life of approximately 27 hours. GSK2816126 exposure (maximum observed plasma concentration and area under the plasma-time curve) increased in a dose-proportional manner. No change from baseline in H3K27me3 was seen in peripheral blood mononuclear cells. Fourteen of 41 (34%) patients had radiological best response of stable disease, 1 patient with lymphoma achieved a partial response, 21 of 41 (51%) patients had progressive disease, and 5 patients were unevaluable for antitumor response. CONCLUSIONS: The MTD of GSK2816126 was established at 2,400 mg, but the dosing method and relatively short half-life limited effective exposure, and modest anticancer activity was observed at tolerable doses

    An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis

    Get PDF
    Background: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings: To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance: Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked. © 2011 O'Reilly et al

    Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming

    Get PDF
    Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca2+ concentration ([Ca2+]i). However, the functional implications of [Ca2+]i in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca2+]i. Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca2+]i. We found that a free [Ca2+]i of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca2+]i of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca2+ concentrations, with docking efficiency being the most robust at 500 nM

    Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion

    Get PDF
    Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments and is believed to play distinct role(s) than other myosins. We addressed a role of this unique motor in secretory PC12 cells, derived from rat adrenal medulla pheochromocytoma using cell lines with reduced MVI synthesis (produced by means of siRNA). Decrease of MVI expression caused severe changes in cell size and morphology, and profound defects in actin cytoskeleton organization and Golgi structure. Also, significant inhibition of cell migration as well as cell proliferation was observed. Flow cytometric analysis revealed that MVI-deficient cells were arrested in G0/G1 phase of the cell cycle but did not undergo increased senescence as compared with control cells. Also, neither polyploidy nor aneuploidy were detected. Surprisingly, no significant effect on noradrenaline secretion was observed. These data indicate that in PC12 cells MVI is involved in cell migration and proliferation but is not crucial for stimulation-dependent catecholamine release
    corecore