268 research outputs found

    Transmission Studies of Left-handed Materials

    Full text link
    Left-handed materials are studied numerically using an improved version of the transfer-matrix method. The transmission, reflection, the phase of the reflection and the absorption are calculated and compared with experiments for both single split-ring resonators (SRR) with negative permeability and left-handed materials (LHMs) which have both the permittivity and permeability negative. Our results suggest ways of positively identifying materials that have both permittivity and permeability negative, from materials that have either permeability or permittivity negative

    Transmission Losses in Left-handed Materials

    Full text link
    We numerically analyze the origin of the transmission losses in left-handed structures. Our data confirms that left handed structures can have very good transmission properties, in spite of the expectable dispersion of their effective permeability and refraction index. The large permittivity of the metallic components improves the transmission. High losses, observed in recent experiments, could be explained by the absorption of the dielectric board

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    Casimir Friction Force and Energy Dissipation for Moving Harmonic Oscillators

    Full text link
    The Casimir friction problem for a pair of dielectric particles in relative motion is analyzed, utilizing a microscopic model in which we start from statistical mechanics for harmonically oscillating particles at finite temperature moving nonrelativistically with constant velocity. The use of statistical mechanics in this context has in our opinion some definite advantages, in comparison with the more conventional quantum electrodynamic description of media that involves the use of a refractive index. The statistical-mechanical description is physical and direct, and the oscillator model, in spite of its simplicity, is nevertheless able to elucidate the essentials of the Casimir friction. As is known, there are diverging opinions about this kind of friction in the literature. Our treatment elaborates upon, and extends, an earlier theory presented by us back in 1992. There we found a finite friction force at any finite temperature, whereas at zero temperature the model led to a zero force. As an additional development in the present paper we evaluate the energy dissipation making use of an exponential cutoff truncating the relative motion of the oscillators. For the dissipation we also establish a general expression that is not limited to the simple oscillator model.Comment: 12 pages, no figures. Discussion extended, references added. To appear in Europhysics Letter

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure

    Interface modes of two-dimensional composite structures

    Full text link
    The surface modes of a composite consisting of aligned metallic wires with square cross sections are investigated, on the basis of photonic band structure calculations. The effective long-wavelength dielectric response function is computed, as a function of the filling fraction. The dependence of the optical absorption on the shape of the wires and the polarization of light is discussed, and the effect of sharp corners analyzed. The effect of the interaction between the wires on the localization of surface plasmons is also addressed.Comment: 12 pages, 4 figures, to appear in Surf. Sc

    Resonant and anti-resonant frequency dependence of the effective parameters of metamaterials

    Full text link
    We present a numerical study of the electromagnetic response of the metamaterial elements that are usedto construct materials with negative refractive index. For an array of split ring resonators (SRR) we find that the resonant behavior of the effective magnetic permeability is accompanied by an anti-resonant behavior of the effective permittivity. In addition, the imaginary parts of the effective permittivity and permeability are opposite in sign. We also observe an identical resonant versus anti-resonant frequency dependence of the effective materials parameters for a periodic array of thin metallic wires with cuts placed periodically along the length of the wire, with roles of the permittivity and permeability reversed from the SRR case. We show in a simple manner that the finite unit cell size is responsible for the anti-resonant behavior

    Casimir Friction Force Between Polarizable Media

    Full text link
    This work is a continuation of our recent series of papers on Casimir friction, for a pair of particles of low relative particle velocity. Each particle is modeled as a simple harmonic oscillator. Our basic method, as before, is the use of quantum mechanical statistical mechanics, involving the Kubo formula, at finite temperature. In this work we begin by analyzing the Casimir friction between two particles polarizable in all spatial directions, this being a generalization of our study in EPL 91, 60003 (2010), which was restricted to a pair of particles with longitudinal polarization only. For simplicity the particles are taken to interact via the electrostatic dipole-dipole interaction. Thereafter, we consider the Casimir friction between one particle and a dielectric half-space, and also the friction between two dielectric half-spaces. Finally, we consider general polarizabilities (beyond the simple one-oscillator form), and show how friction occurs at finite temperature when finite frequency regions of the imaginary parts of polarizabilities overlap.Comment: 13 pages latex, no figure

    A review of size and geometrical factors influencing resonant frequencies in metamaterials

    Get PDF
    Although metamaterials and so-called left-handed media have originated from theoretical considerations, it is only by their practical fabrication and the measurement of their properties that they have gained credibility and can fulfil the potential of their predicted properties. In this review we consider some of the more generally applicable fabrication methods and changes in geometry as they have progressed, exhibiting resonant frequencies ranging from radio waves to the visible optical region

    Guided Modes in Negative Refractive Index Waveguides

    Get PDF
    We study linear guided waves propagating in a slab waveguide made of a negative-refraction- index material, the so-called left-handed waveguide. We reveal that the guided waves in left-handed waveguides possess a number of peculiar properties, such as the absence of the fundamental modes, mode double degeneracy, and sign-varying energy ux. In particular, we predict the existence of novel types of guided waves with a dipole-vortex structure of the Pointing vector.Comment: 4 pages, 4 figure
    corecore