46 research outputs found

    A Simple BATSE Measure of GRB Duty Cycle

    Get PDF
    We introduce a definition of gamma-ray burst (GRB) duty cycle that describes the GRB's efficiency as an emitter; it is the GRB's average flux relative to the peak flux. This GRB duty cycle is easily described in terms of measured BATSE parameters; it is essentially fluence divided by the quantity peak flux times duration. Since fluence and duration are two of the three defining characteristics of the GRB classes identified by statistical clustering techniques (the other is spectral hardness), duty cycle is a potentially valuable probe for studying properties of these classes.Comment: 4 pages, 1 figure, presented at the 5th Huntsville Gamma-Ray Burst Symposiu

    BATSE Data Analysis

    Get PDF
    The four primary tasks of the Burst and Transient Source Experiment (BATSE) were completed. The Detector Response Matrices were maintained and some improvements implemented. The spectral analysis tasks based on the 4 channel lad data were accomplished. The BLOT team effort was completed and the SN1987A balloon flight data analysis paper was submitted

    Properties of Gamma-Ray Burst Classes

    Get PDF
    The three gamma-ray burst (GRB) classes identified by statistical clustering analysis (Mukherjee et al. 1998) are examined using the pattern recognition algorithm C4.5 (Quinlan 1986). Although the statistical existence of Class 3 (intermediate duration, intermediate fluence, soft) is supported, the properties of this class do not need to arise from a distinct source population. Class 3 properties can easily be produced from Class 1 (long, high fluence, intermediate hardness) by a combination of measurement error, hardness/intensity correlation, and a newly-identified BATSE bias (the fluence duration bias). Class 2 (short, low fluence, hard) does not appear to be related to Class 1.Comment: 5 pages, 4 imbedded figures, presented at the 5th Huntsville Gamma-Ray Burst Symposiu

    AI Gamma-Ray Burst Classification: Methodology/Preliminary Results

    Get PDF
    Artificial intelligence (AI) classifiers can be used to classify unknowns, refine existing classification parameters, and identify/screen out ineffectual parameters. We present an AI methodology for classifying new gamma-ray bursts, along with some preliminary results.Comment: 5 pages, 2 postscript figures. To appear in the Fourth Huntsville Gamma-Ray Burst Symposiu

    Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

    Get PDF
    Six intensity groups with ~150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anti-correlation is found with good statistical significance during the average back slopes of bursts. A stretch factor ~2 is found between the 150 dimmest bursts, with peak flux 4.1 ph cm^{-2} s^{-1}. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for burst with decreasing peak flux from >4.1 ph cm^{-2} s^{-1} down to 0.7 ph cm^{-2} s^{-1}, the magnitude of the stretching factor is less than ~ 1.4 and is therefore inconsistent with stretching factor of back slope.Comment: 21 pages, 3 figures. Accepted to Ap

    BATSE Observations of Gamma-Ray Burst Spectra. IV. Time-Resolved High-Energy Spectroscopy

    Get PDF
    We report on the temporal behavior of the high-energy power law continuum component of gamma-ray burst spectra with data obtained by the Burst and Transient Source Experiment. We have selected 126 high fluence and high flux bursts from the beginning of the mission up until the present. Much of the data were obtained with the Large Area Detectors, which have nearly all-sky coverage, excellent sensitivity over two decades of energy and moderate energy resolution, ideal for continuum spectra studies of a large sample of bursts at high time resolution. At least 8 spectra from each burst were fitted with a spectral form that consisted of a low-energy power law, a spectral break at middle energies and a high-energy continuum. In most bursts (122), the high-energy continuum was consistent with a power law. The evolution of the fitted high-energy power-law index over the selected spectra for each burst is inconsistent with a constant for 34% of the total sample. The sample distribution of the average value for the index from each burst is fairly narrow, centered on -2.12. A linear trend in time is ruled out for only 20% of the bursts, with hard-to-soft evolution dominating the sample (100 events). The distribution for the total change in the power-law index over the duration of a burst peaks at the value -0.37, and is characterized by a median absolute deviation of 0.39, arguing that a single physical process is involved. We present analyses of the correlation of the power-law index with time, burst intensity and low-energy time evolution. In general, we confirm the general hard-to-soft spectral evolution observed in the low-energy component of the continuum, while presenting evidence that this evolution is different in nature from that of the rest of the continuum.Comment: 30 pages, with 2 tables and 9 figures To appear in The Astrophysical Journal, April 1, 199

    GRB Repetition Limits from Current BATSE Observations

    Get PDF
    Revised upper limits on gamma-ray burst repetition rates are found using the BATSE 3B and 4B catalogs. A statistical repetition model is assumed in which sources burst at a mean rate but in which BATSE observes bursts randomly from each source
    corecore