1,421 research outputs found

    Examining the factors that promote sustained engagement in young people

    Get PDF
    Little research to date has explored the kinds of factors that promote sustained engagement in young people. In order to address this gap in the literature, 20 individuals who attended national youth conferences (the goal of which being to promote engagement above and beyond the conferences themselves) between one and 14 years earlier were interviewed about their experiences before, during, and after the conferences. Specifically, participants were asked to discuss their levels of involvement in their schools and communities after attending the conferences, as well as the factors that sustained or hindered their participation. Four emerging themes---the nature of the activities/tasks; feeling confident, empowered, and motivated for action; building knowledge, skills, and capacity; and being supported and having their contributions recognized---were particularly salient and were thus chosen to form the basis of a proposed model for sustained engagement. The importance of these four factors in promoting sustained engagement as well as the ways in which, when absent, these factors can inhibit sustained participation, are described. Whenever possible, insight into the critical components and/or processes of the conferences and/or the other community-based activities in which participants were involved that appeared to be particularly effective in cultivating these sustaining factors is provided. Finally, implications for practice are discussed and suggestions for future research are proposed

    Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    Get PDF
    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces

    How to Staff when Customers Arrive in Batches

    Full text link
    In settings as diverse as autonomous vehicles, cloud computing, and pandemic quarantines, requests for service can arrive in near or true simultaneity with one another. This creates batches of arrivals to the underlying queueing system. In this paper, we study the staffing problem for the batch arrival queue. We show that batches place a significant stress on services, and thus require a high amount of resources and preparation. In fact, we find that there is no economy of scale as the number of customers in each batch increases, creating a stark contrast with the square root safety staffing rules enjoyed by systems with solitary arrivals of customers. Furthermore, when customers arrive both quickly and in batches, an economy of scale can exist, but it is weaker than what is typically expected. Methodologically, these staffing results follow from novel large batch and hybrid large-batch-and-large-rate limits of the general multi-server queueing model. In the pure large batch limit, we establish the first formal connection between multi-server queues and storage processes, another family of stochastic processes. By consequence, we show that the limit of the batch scaled queue length process is not asymptotically normal, and that, in fact, the fluid and diffusion-type limits coincide. This is what drives our staffing analysis of the batch arrival queue, and what implies that the (safety) staffing of this system must be directly proportional to the batch size just to achieve a non-degenerate probability of customers waiting

    The Occurrence of Autoimmune Diseases in Patients with Multiple Sclerosis and Their Families

    Get PDF
    The aims of this study were to determine whether the occurrence of autoimmune diseases is increased in patients with multiple sclerosis (MS) and their families and whether this is influenced by the type of MS. We conducted a case-control study using a questionnaire design to determine whether the prevalence of 11 autoimmune diseases is increased in patients with MS and their first-degree relatives compared to a random population control group and their first-degree relatives. We found that the total combined prevalence of the 11autoimmune diseases was higher in the MS patients than in the controls, with an odds ratio of 1.7 (95% confidence interval 0.9-3.2; P= 0.10) increasing to 1.9 (1.0-3.5; P= 0.05) after adjusting for age. For persons aged under 60 years, the odds ratio was 2.3 (1.1-4.6). We also found that there was a significant increase in the total combined prevalence of the autoimmune diseases in the first-degree relatives of MS patients compared to the first-degree relatives of the control group (P= 0.003, odds ratio 2.2, confidence interval 1.3-3.7). Patients with primary progressive MS did not differ from patients with relapsing-remitting or secondary progressive MS in the personal or familial occurrence of autoimmune disease. In conclusion, although there were sources of possible bias, this study suggests that individuals with MS have a genetic predisposition to autoimmunity in general

    Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune Encephalomyelitis through a mechanism not involving Fas (CD95)

    Get PDF
    Morphological studies have shown that macrophages and microglia undergo apoptosis in the central nervous system (CNS) in acute experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. To assess the relative levels of macrophage and microglial apoptosis, and the molecular mechanisms involved in this process, we used three-colour flow cytometry to identify CD45lowCD11b/c+ microglial cells and CD45highCD11b/c+ macrophages in the inflammatory cells isolated from the spinal cords of Lewis rats 13 days after immunization with myelin basic protein (MBP) and complete Freund's adjuvant. Simultaneously, we analyzed the DNA content of these cell populations to assess the proportions of cells undergoing apoptosis and in different stages of the cell cycle or examined their expression of three apoptosis-regulating proteins, i.e. Fas (CD95), Fas ligand (FasL) and Bcl-2. Microglia were highly vulnerable to apoptosis and were over-represented in the apoptotic population. Macrophages were less susceptible to apoptosis than microglia and underwent mitosis more frequently than microglia. The different susceptibilities of microglia and macrophages to apoptosis did not appear to be due to variations in Fas, FasL or Bcl-2 expression, as the proportions of microglia and macrophages expressing these proteins were similar, and were relatively high. Furthermore, in contrast to T cell apoptosis, apoptosis of microglia/macrophages did not occur more frequently in cells expressing Fas or FasL, or less frequently in cells expressing Bcl-2. These results indicate that the apoptosis of microglia and CNS macrophages in EAE is not mediated through the Fas pathway, and that Bcl-2 expression does not protect them from apoptosis. Expression of FasL by macrophages and microglia may contribute to the pathogenesis and immunoregulation of EAE through interactions with Fas+ oligodendrocytes and Fas+ T cells. The high level of microglial apoptosis in EAE indicates that microglial apoptosis may be an important homeostatic mechanism for controlling the number of microglia in the CNS following microglial activation and proliferation

    Cost studies of multipurpose large launch vehicles, volume 4 Final report

    Get PDF
    Cost analysis of research and development of large multipurpose launch vehicl

    Immunology of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by ­meningeal lymphoid follicles with germinal centers

    Dynamics of levitated nanospheres: towards the strong coupling regime

    Get PDF
    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realising quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regimes, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ωM\omega_M and single-photon optomechanical coupling strength parameters gg are a function of the optical field intensities, in contrast to usual set-ups where ωM\omega_M and gg are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r=20−500r=20-500\,nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use this data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light-matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r≳100r \gtrsim 100\,nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes

    Decreased T cell reactivity to Epstein–Barr virus infected lymphoblastoid cell lines in multiple sclerosis

    Get PDF
    Objective: To investigate T cell and antibody immunity to Epstein-Barr virus (EBV) in multiple sclerosis (MS)
    • …
    corecore