7 research outputs found

    Pathological and ecological host consequences of infection by an introduced fish parasite

    Get PDF
    The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite

    Resources, key traits and the size of fungal epidemics in Daphnia populations.

    No full text
    1. Parasites can profoundly affect host populations and ecological communities. Thus, it remains critical to identify mechanisms that drive variation in epidemics. Resource availability can drive epidemics via traits of hosts and parasites that govern disease spread. 2. Here, we map resource–trait–epidemic connections to explain variation in fungal outbreaks (Metschnikowia bicuspidata) in a zooplankton host (Daphnia dentifera) among lakes. We predicted epidemics would grow larger in lakes with more phytoplankton via three energetic mechanisms. First, resources should stimulate Daphnia reproduction, potentially elevating host density. Secondly, resources should boost body size of hosts, enhancing exposure to environmentally distributed propagules through size-dependent feeding. Thirdly, resources should fuel parasite reproduction within hosts. 3. To test these predictions, we sampled 12 natural epidemics and tracked edible algae, fungal infection prevalence, body size, fecundity and density of hosts, as well as within-host parasite loads. 4. Epidemics grew larger in lakes with more algal resources. Structural equation modelling revealed that resource availability stimulated all three traits (host fecundity, host size and parasite load). However, only parasite load connected resources to epidemic size. Epidemics grew larger in more dense Daphnia populations, but host density was unrelated to host fecundity (thus breaking its link to resources). 5. Thus, via energetic mechanisms, resource availability can stimulate key trait(s) governing epidemics in nature. A synthetic focus on resources and resource–trait links could yield powerful insights into epidemics
    corecore