94 research outputs found
The Latin Leaflet, Number 29
Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety.
Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety.
The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices
Fatigue analysis-based numerical design of stamping tools made of cast iron
This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important
Non-equilibrium Green's functions in density functional tight binding: method and applications
We present a detailed description of the implementation of the non-equilibrium Green's function (NEGF) technique on the density-functional-based tight-binding (gDFTB) simulation tool. This approach can be used to compute electronic transport in organic and inorganic molecular-scale devices. The DFTB tight-binding formulation gives an efficient computational tool that is able to handle a large number of atoms. NEGFs are used to compute the electronic density self-consistently with the open-boundary conditions naturally encountered in quantum transport problems and the boundary conditions imposed by the potentials at the contacts. The efficient block-iterative algorithm used to compute the Green's functions is illustrated. The Hartree potential of the density-functional Hamiltonian is obtained by solving the three-dimensional Poisson equation. A scheme to treat geometrically complex boundary conditions is discussed, including the possibility of including multiterminal calculations
Fast Switching Electrochromic Devices Containing Optimized BEMA/PEGMA Gel Polymer Electrolytes
An optimized thermoset gel polymer electrolyte based on Bisphenol A ethoxylate dimethacrylate and Poly(ethylene glycol) methyl ether methacrylate (BEMA/PEGMA) was prepared by facile photo-induced free radical polymerisation technique and tested for the first time in electrochromic devices (ECD) combining WO3 sputtered on ITO as cathodes and V2O5 electrodeposited on ITO as anodes. The behaviour of the prepared ECD was investigated electrochemically and electro-optically. The ECD transmission spectrum was monitored in the visible and near-infrared region by varying applied potential. A switching time of ca. 2 s for Li+ insertion (coloring) and of ca. 1 s for Li+ de-insertion (bleaching) were found. UV-VIS spectroelectrochemical measurements evidenced a considerable contrast between bleached and colored state along with a good stability over repeated cycles. The reported electrochromic devices showed a considerable enhancement of switching time with respect to the previously reported polymeric ECD indicating that they are good candidates for the implementation of intelligent windows and smart displays
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
QuantumATK is an integrated set of atomic-scale modelling tools developed
since 2003 by professional software engineers in collaboration with academic
researchers. While different aspects and individual modules of the platform
have been previously presented, the purpose of this paper is to give a general
overview of the platform. The QuantumATK simulation engines enable
electronic-structure calculations using density functional theory or
tight-binding model Hamiltonians, and also offers bonded or reactive empirical
force fields in many different parametrizations. Density functional theory is
implemented using either a plane-wave basis or expansion of electronic states
in a linear combination of atomic orbitals. The platform includes a long list
of advanced modules, including Green's-function methods for electron transport
simulations and surface calculations, first-principles electron-phonon and
electron-photon couplings, simulation of atomic-scale heat transport, ion
dynamics, spintronics, optical properties of materials, static polarization,
and more. Seamless integration of the different simulation engines into a
common platform allows for easy combination of different simulation methods
into complex workflows. Besides giving a general overview and presenting a
number of implementation details not previously published, we also present four
different application examples. These are calculations of the phonon-limited
mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model
simulation of lithium ion drift through a battery cathode in an external
electric field, and electronic-structure calculations of the
composition-dependent band gap of SiGe alloys.Comment: Submitted to Journal of Physics: Condensed Matte
MODELISATION DE L'IMPACT DE PLAQUES MINCES PAR DES PROJECTILES DE PETITS CALIBRES METHODE INVERSE
La résolution du problème de l'impact à faible vitesse (100 à 300 m/s), d'un projectile sphérique rigide sur des plaques minces métalliques, est calculé par une méthode inverse. Nous utilisons la théorie convective en grandes déformations et nous faisons l'hypothèse d'un comportement rigide plastique écrouissable de la plaque. Le bilan énergétique pendant le contact permet d'accéder, de manière analytique, à toutes les informations utiles. Un critère de rupture locale, de type énergétique à été introduit pour prévoir la perforation. Des expériences ont été faites sur l'alliage léger A-G5 (5096), les aciers E 24 (A 283-C) et Z6CND18/12 (316) pour accéder à l'identification des paramètres du champ de déplacements, par une méthode cinématographique ultrarapide.The resolution of low speed impact problem (100 to 300 m/s) created by rigid spherical target on thin metallic is solved by an inverse method. We use the convective theory in large deformations and make plate hardenig rigid plastic comportement hypothesis. The energetic balance during contact, permit to access by analytical method, at alls usefull informations. A local criterium rupture (energetical type), is injected to allow the perforation. Some experimentations have been made on light 5096 alloy, low carbon AlSI A 283-C steel, austenitic 316 steel to have access to the identification of displacement field parameters by an ultra-speed cinematographic method
- …