30 research outputs found

    Integrability and maximally helicity violating diagrams in n=4 supersymmetric yang-mills theory.

    Get PDF
    We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation operator of N=4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the method and future directions

    Integrability and unitarity

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.This work was supported by the Science and Technology Facilities Council Consolidated Grant ST/L000415/1 “String theory, gauge theory & duality”

    Tr(F-3) supersymmetric form factors and maximal transcendentality. Part II. 0 < N < 4 super Yang-Mills

    Get PDF
    The study of form factors has many phenomenologically interesting applications, one of which is Higgs plus gluon amplitudes in QCD. Through effective field theory techniques these are related to form factors of various operators of increasing classical dimension. In this paper we extend our analysis of the first finite top-mass correction, arising from the operator Tr(F3){\rm Tr} (F^3), from N=4\mathcal{N}=4 super Yang-Mills to theories with N<4\mathcal{N}<4, for the case of three gluons and up to two loops. We confirm our earlier result that the maximally transcendental part of the associated Catani remainder is universal and equal to that of the form factor of a protected trilinear operator in the maximally supersymmetric theory. The terms with lower transcendentality deviate from the N=4\mathcal{N}=4 answer by a surprisingly small set of terms involving for example ζ2\zeta_2, ζ3\zeta_3 and simple powers of logarithms, for which we provide explicit expressions.Comment: Version accepted in JHE

    Worldsheet factorization for twistor-strings

    Get PDF
    We study the multiparticle factorization properties of two worldsheet theories which--at tree-level--describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.Comment: 50 pages, 7 figures. v2: typos corrected and references update
    corecore