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Abstract: We compute two-loop form factors of operators in the SU(2|3) closed subsec-

tor of N =4 supersymmetric Yang-Mills. In particular, we focus on the non-protected,

dimension-three operators Tr(X[Y, Z]) and Tr(ψψ) for which we compute the four possible

two-loop form factors, and corresponding remainder functions, with external states 〈X̄Ȳ Z̄|
and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of

〈X̄Ȳ Z̄|Tr(X[Y, Z])|0〉 turns out to be identical to that of the corresponding known quan-

tity for the half-BPS operator Tr(X3). We also find a surprising connection between the

terms subleading in transcendentality and certain a priori unrelated remainder densities

introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use

our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of

the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential

connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon

amplitudes in QCD in an effective Lagrangian approach.
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2
Trψαψα|0〉 24

5.1 Two-particle cut in the q2-channel 24

5.2 Two-particle cut in the s23-channel 25

5.3 Final result 28

6 Two-loop sub-minimal form factor 〈ψ̄ψ̄|TrX[Y, Z]|0〉 29

7 Two-loop dilatation operator in the SU(2|3) sector 30

8 Conclusions 34

A One-loop integral functions 35

B Comparing half-BPS form factors 36

– 1 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

1 Introduction

The study of form factors of composite operators is a very active area of research. After the

pioneering paper [1], interest in the calculation of form factors in supersymmetric theories

was rekindled at strong coupling in [2] and at weak coupling in [3]. Specifically, in [3]

the study of the simplest possible form factors was undertaken, namely form factors of

quadratic half-BPS operators in N =4 supersymmetric Yang-Mills (SYM). The three- and

four-loop result for the simplest, two-point (or Sudakov) form factors were then derived

in [4, 5], respectively. In [6] two-loop form factors of the form 〈X̄X̄g±|Tr(X2)|0〉 were com-

puted, where X is one of the three complex scalar fields of the theory, and g+ (g−) denotes a

gluon of positive (negative) helicity. In that paper it was also shown that these form factors

are identical to the form factors of the self-dual field strength1 FSD, 〈g+g+g±|Tr(FSD)2|0〉
(divided by the corresponding tree-level contribution) thanks to supersymmetric Ward

identities [7, 8]. Indeed, the operators Tr(X2) and the on-shell Lagrangian belong to the

simplest operator multiplet in the N = 4 theory, namely the protected stress-tensor mul-

tiplet. Remarkably, in QCD the form factors of Tr(F 2) compute the leading contribution

to Higgs + multi-gluon amplitudes in an effective Lagrangian approach [9–17] in the large

top mass limit. The corresponding interaction has the form L(0)
eff ∼H Tr(F 2), and hence

the quantity2

〈gg · · · g|
∫
d4x e−iq·x Tr(F 2)(x)|0〉 (1.1)

precisely computes the amplitude for the process H → gg · · · g, with q2 = m2
H.

Of course, there is no a priori connection between the quantity (1.1) evaluated in

QCD and in N = 4 SYM. Yet, in [6] it was realised that the three-point form factor

computed there, 〈X̄X̄g+|Tr(X2)|0〉, is identical to the maximally transcendental part of

the amplitudes for H → g+g+g± calculated in [18, 19]. This led to the conjecture that

the “most complicated part”, i.e. the maximally transcendental contribution to Higgs plus

multi-gluon processes, at infinite top quark mass, can in fact be computed using N =4 SYM.

The coupling L(0)
eff quoted earlier is only the first in an effective Lagrangian description

of gluon fusion processes. Subleading corrections have been studied in a number of papers,

see e.g. [20, 21], where the expansion of the effective Lagrangian is written as

Leff = Ĉ0O0 +
1

m2
top

4∑
i=1

ĈiOi + O

(
1

m4
top

)
, (1.2)

where Oi, i = 1, . . . , 4 are dimension-7 operators and O0 = H Tr(F 2).

Some of the operators in the set {Oi}4i=1 do not contain quarks, and as such can be

considered also in N = 4 SYM. In this paper we would like to suggest the relevance of

computing form factors of such operators in the maximally supersymmetric theory, and

comparing to the QCD results. One possible very interesting scenario is that the N =4 SYM

calculation continues to capture the maximally transcendental part of the corresponding

1Or, more precisely, of the on-shell Lagrangian.
2Recall that we can separate out F 2 = F 2

SD + F 2
ASD.
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QCD calculation. In particular, the following two operators can be considered,

O1 := H Tr(F 3) = H
[
Tr(F 3

SD) + Tr(F 3
ASD)

]
, O2 := H Tr

[
(DµF νρ)(DµFνρ)

]
, (1.3)

which in QCD are both multiplicatively renormalisable at one loop [22]. Let us briefly

discuss the case of O1, and in particular the form factor 〈g+g+g+|Tr(F 3)|0〉. At tree-level

and zero momentum transfer (i.e. q = 0, where q is the momentum carried by the operator),

these form factors become amplitudes produced by higher-dimensional couplings, and have

been considered previously in [13, 23, 24]. At q 6= 0, they have been studied at tree-level

and one loop in [21]. In N = 4 SYM and at one loop, it turns out that the operator

Tr(F 3) has the same anomalous dimension as the Konishi operator (the calculation of the

three-gluon form factor for this operator is currently under investigation). A technically

simpler, but equally interesting computation consists of focusing on simpler operators, still

containing three fields, and several candidate operators immediately come to mind. The

half-BPS operator

OBPS = Tr(X3) , (1.4)

and its form factors have been studied at one and two loops in [25, 26]. A priori it is

however too simple — for instance, unlike Tr(F 3) in QCD, OBPS is protected. Scalar fields

are of course preferred, as their form factors are the simplest possible. In order to get a

non-protected, trilinear operator we need to consider three complex scalar fields, which we

can choose to be

X := φ12 , Y := φ23 , Z := φ31 . (1.5)

From these fields, one can immediately construct the operators

ÕBPS := Tr(X{Y,Z}) , (1.6)

OB := Tr(X[Y,Z]) . (1.7)

While the first operator is another half-BPS combination,3 quantum corrections lead to

mixing between OB and the dimension-three operator,

OF :=
1

2
Tr(ψαψα) , (1.8)

where we have defined

ψα := ψ123,α . (1.9)

The fields {φ12, φ23, φ31;ψ123,α} are precisely the letters of the SU(2|3) closed subsector of

N = 4 SYM. It has been studied by Beisert in [27, 28], where the dilatation operator was

determined up to three loops. Apart from being closed under operator mixing, there is

another important feature of this sector: it gives rise to length-changing interactions in the

dilatation operator, such as XY Z ↔ ψψ, unlike the (simpler) SU(2) sector.

Motivated by the above discussion, we now describe in more detail the goals of this

paper. In the following we will focus on the non-protected, (classically) dimension-three

3It is symmetric and traceless once written in SO(6) indices.
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operators OB and OF for which we compute the four possible two-loop form factors, and

corresponding remainder functions with external states 〈X̄Ȳ Z̄| and 〈ψ̄ψ̄|. It is convenient,

and natural from the point of view of operator mixing discussed later, to package them

into a matrix of form factors:

F :=

〈ψ̄ψ̄|OF |0〉 〈X̄Ȳ Z̄|OF |0〉
〈ψ̄ψ̄|OB|0〉 〈X̄Ȳ Z̄|OB|0〉

 . (1.10)

Apart from the possible connections to phenomenologically relevant quantities in QCD

alluded to earlier, there are additional reasons to study form factors of operators such as

OB and OF :

1. Firstly, it is very interesting to scan the possible remainders of form factors of wider

classes of non-protected operators, and compare to results obtained for protected

operators and operators belonging to different sectors. A key motivation is to search

for regularities and determine universal building blocks in the results that are common

to form factors of different operators.

2. By computing loop corrections to minimal form factors of non-protected operators

it is possible to find the dilatation operator. This was done recently at one loop

for the complete one-loop dilatation operator in [29] and at two loops in the SU(2)

subsector [30]. Potentially, this holds promise for gaining further insights into the

integrability of N = 4 SYM.4

The calculation of the two-loop remainder of the form factor 〈X̄Ȳ Z̄|OB|0〉 is very instruc-

tive in this respect. Indeed, we will show that the remainder function is given by a sum

of terms of decreasing transcendentality, where the leading, transcendentality-four term

turns out to be identical to the remainder for the form factor 〈X̄X̄X̄|Tr(X3)|0〉 computed

in [26]. Furthermore, the terms of transcendentality ranging from three to zero turn out

to be related to certain finite remainder densities introduced in [30] in the study of the

dilatation operator in the SU(2) sector. It is interesting that they appear (in some form) in

the larger SU(2|3) sector, possibly pointing to some universality of these quantities. This

finding leads us to speculate that the leading transcendental part of the correction terms

to Higgs + multi-gluon processes induced by the interactions Oi, i ≥ 1, on the right-hand

side of (1.2), can be equivalently obtained by computing their form factors (or form factors

related by supersymmetry) in the much simpler N = 4 SYM theory. The fact that the

maximally transcendental part of the form factors in the SU(2|3) sector is computed ef-

fectively by form factors of half-BPS operators leads us to further speculate on the special

role of such operators in computing the maximally transcendental part of the form factors

of the operators Oi for i ≥ 1 in QCD.

We will also study and resolve the operator mixing, a problem which requires the knowl-

edge of the ultraviolet (UV) divergences of three additional form factors: 〈X̄Ȳ Z̄|OF |0〉,
〈ψ̄ψ̄|OF |0〉, and 〈ψ̄ψ̄|OB|0〉. Note that these four form factors are different in nature: while

4Complementary approaches based on two-point functions were recently explored in [31–33].
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〈X̄Ȳ Z̄|OB|0〉 and 〈ψ̄ψ̄|OF |0〉 are minimal (i.e. the number of particles in the external state

is the same as the number of fields in the operator), 〈ψ̄ψ̄|OB|0〉 is sub-minimal (more fields

than particles), and 〈X̄Ȳ Z̄|OF |0〉 is non-minimal. Furthermore, at the loop order we are

working the latter two are free from infrared (IR) divergences, lacking a corresponding tree-

level form factor.5 On the other hand they all have UV divergences, which will be extracted

to resolve the mixing and determine the two-loop dilatation operator in the SU(2|3) sector,

in agreement with [28]. By diagonalising it, two distinguished combinations of OB and OF
will be determined, one which is half-BPS [28, 35, 36] and one which is a descendant of the

Konishi operator [28, 36–38].

The rest of the paper is organised as follows. In sections 2 and 3 we will derive the

form factor 〈X̄Ȳ Z̄|OB|0〉 at one and two loops, respectively. The two-loop IR-finite (but

still UV-divergent) remainder function is then derived in section 4. There we also establish

relations of our result to the results of [26] and [30] for the maximally and subleading

transcendental pieces of our result, respectively. In section 5 we compute the sub-minimal

form factor 〈X̄Ȳ Z̄|OF |0〉 up to one loop, which is sufficient for the computation of the

two-loop dilatation operator performed later. Section 6 is devoted to computing the sub-

minimal form factor 〈ψ̄ψ̄|OB|0〉 at two loops. Using the UV-divergent parts of these form

factors, we compute in section 7 the two-loop dilatation operator in the SU(2|3) sector,

finding its eigenvectors and corresponding anomalous dimensions up to two loops. We

conclude with comments on potential future research directions in section 8.

2 One-loop minimal form factor 〈X̄Ȳ Z̄|TrX[Y, Z]|0〉

In this section we consider form factors of the operator introduced in (1.7),

OB = Tr(X[Y, Z]) ,

at one loop. Before presenting the calculation we summarise our notation and conventions

for the reader’s convenience.

2.1 Setting up the notation

The fields appearing in the SU(2|3) sector are

{X,Y, Z;ψα} , (2.1)

previously introduced in (1.5) and (1.9). We recall that the fields φAB satisfy the reality

condition

φAB = φ̄AB =
1

2
εABCD φCD , (2.2)

and therefore

X = φ34 = φ12 , Y = φ14 = φ23 , Z = φ24 = φ31 . (2.3)

5We also note that the discontinuities of sub-minimal form factors at two loops were computed in [34]

in complete generality.

– 5 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

We also introduce

ψABC,α = εABCD ψ
D
α , ψ̄ABCα̇ = εABCD ψ̄D,α̇ . (2.4)

In our conventions all on-shell particles appearing in amplitudes or form factors are outgoing

while the momentum q of the off-shell operator in a form factor is by definition incoming.

Therefore it is natural to introduce the Nair super-annihilation operator as

Φ(p, η) = g(+)(p) + ηAψ
A(p) +

1

2
φAB(p)ηAηB +

1

3!
ψ̄ABC(p)ηAηBηC

+ g(−)(p)η1 · · · η4 , (2.5)

where g(+)(p), ψA(p), φAB(p), ψ̄ABC(p) and g(−)(p), denote the annihilation operators

for the various particles of N = 4 SYM. For instance 〈0|ψA(p) is a state of an outgoing

fermion with momentum p and helicity +1/2, while 〈0|ψ̄ABC(p) has momentum p and

helicity −1/2. In the following we will usually denote multiparticle states with on-shell

momenta 〈ψ(pi)
Ai · · ·φ(pj)

AjBj · · · ψ̄(pk)
AkBkCk · · · | in the slightly more compact notation

〈iψAi · · · jφ
AjBj · · · kψ̄AkBkCk · · · | whenever we want to make particle labels explicit. Often

we will also use the following shorthand notation if labels are not needed, in particular

〈X̄Ȳ Z̄| := 〈1φ12
2φ

23
3φ

31 | and 〈ψ̄ψ̄| := 〈1ψ̄123
2ψ̄

123 |.

2.2 A useful decomposition

In order to compute the form factor 〈X̄Ȳ Z̄|OB|0〉, with OB defined in (1.7), we will make

use of the decomposition

OB = ÕBPS +Ooffset , (2.6)

where ÕBPS is the half-BPS operator defined in (1.6) and

Ooffset := −2 Tr(XZY ) . (2.7)

This decomposition turns out to be particularly useful for two reasons:

1. Firstly, it separates out the contribution of the half-BPS operator ÕBPS. The re-

sult for the corresponding half-BPS form factor is identical to that of the half-BPS

operator Tr(X3) obtained in [25, 26] up to two loops and need not be computed

again.6

2. Secondly, the form factor of the offset operator 〈X̄Ȳ Z̄|Ooffset|0〉 turns out to be

particularly simple because of the “shuffled” configuration of the state with respect

to the fields inside the operator.7 Specifically, we will find that this form factor is

expressed in terms of functions with strictly sub-maximal degree of transcendentality,

while the half-BPS operator is expressed in terms of functions with maximal degree

of transcendentality only.

Therefore we focus on the “offset” operator introduced in (2.7), from which the results for

OB can then be easily obtained.

6See appendix B for details.
7Note that we could have performed the decomposition Tr(X[Y, Z]) = −Tr(X{Y, Z}) + 2 Tr(XY Z) but

this is not convenient for our choice of external state 〈X̄Ȳ Z̄|.

– 6 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

Figure 1. Two-particle cut of the one-loop form factor F
(1)
Ooffset

(1φ
12

, 2φ
23

, 3φ
31

; q). We remind the

reader of our notation: X = φ12, Y = φ23, Z = φ31, with X̄ = φ12, Ȳ = φ23 and Z̄ = φ31.

2.3 Two-particle cuts and result

In the following we denote by F
(L)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q) the L-loop contribution to the form

factor 〈X̄Ȳ Z̄|Ooffset(0)|0〉. We begin by computing F
(1)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q) with the two-

particle cut shown in figure 1. This, plus two cyclic permutations of the external particles,

are the only cuts contributing to this form factor.

The tree-level amplitude entering the cut is

A(2φ
23
, 3φ

31
, `φ

14

2 , `φ
24

1 ) = i , (2.8)

while the required tree-level form factor is

F
(0)
Ooffset

(1φ
12
,−`φ

31

1 ,−`φ
23

2 ; q) = −2 . (2.9)

Hence, uplifting the cut we simply get bubble integrals:8

F
(1)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q) = 2 i× + cyclic(1, 2, 3) . (2.10)

A similar calculation shows that, as anticipated, the one-loop form factor of the operator

ÕBPS introduced in (1.6) is identical to that of the operator Tr(X3) computed in [25],

F
(1)

ÕBPS
(1φ

12
, 2φ

23
, 3φ

31
; q) = i s23 × + cyclic(1, 2, 3) . (2.11)

Thus, the one-loop form factor of OB is9

F
(1)
OB

(1φ
12
, 2φ

23
, 3φ

31
; q) = 2 i× + i s23 × + cyclic(1, 2, 3) , (2.12)

where sij := (pi + pj)
2 as usual.

8Note that each of the cut propagators carries an additional factor of i.
9Expressions for the one-loop master integrals can be found in appendix A.
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From (2.12) we can easily extract the one-loop anomalous dimension of OB. In order

to extract the UV divergence from (2.12) we have to remove the IR divergences which is

achieved by simply dropping the triangle integrals. Using the results of appendix A, we

find the UV divergence at the renormalisation scale µR to be

F
(1)
OB

∣∣∣
µR,UV

= −6

ε
a(µR) , (2.13)

where

a(µR) :=
g2Ne−εγE

(4π)2−ε

(
µR
µ

)−2ε

, (2.14)

and µ is the usual dimensional regularisation mass parameter. From this we can read off

the one-loop anomalous dimension via

γO = −µR
∂

∂µR
log(1 + Z(1)

O + · · · )
∣∣∣
ε→0

, (2.15)

with

Z(1)
OB

=
6

ε
a(µR) . (2.16)

This leads to

γ
(1)
OB

= 12 a , (2.17)

where a is the four-dimensional ’t Hooft coupling, given by

a :=
g2N

(4π)2
. (2.18)

The result (2.17) is in agreement with known results for the one-loop anomalous dimension

of the Konishi multiplet. The same value can be obtained with an explicit application of

the formula for the complete one-loop dilatation operator of [34].

2.4 Auxiliary one-loop form factors needed for two-loop cuts

In this section we discuss two additional one-loop form factors that will appear as building

blocks for the two-particle cuts of the two-loop form factor of Ooffset (and thus OB) in

section 3.1.2.

The first form factor we consider is F
(1)
Ooffset

(1φ
12
, 2φ

31
, 3φ

23
; q), where now the ordering

of the particles in the state parallels that of the fields in the operator. A simple two-particle

cut is sufficient to determine it, see figure 2.

The amplitude entering the cut is

A(2φ
31
, 3φ

23
, `φ

14

2 , `φ
24

1 ) = i
〈2`2〉 〈3`1〉
〈3`2〉 〈`12〉

, (2.19)

thus we get

F
(1)
Ooffset

(1φ
12
, 2φ

31
, 3φ

23
; q) = −2 i× −2 i s23× + cyclic(1, 2, 3) . (2.20)

– 8 –
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Figure 2. One of the three two-particle cuts of the one-loop form factor F
(1)
Ooffset

(1φ
12

, 2φ
31

, 3φ
23

; q).

Two more cuts are obtained by cyclically permuting the external legs.

Figure 3. One-loop form factors with a fermionic external state entering the two-loop two-particle

cuts of figure 6.

Next we consider the form factors of Ooffset with a fermionic external state made of exci-

tations ψ3 and ψ̄123, as shown in figure 3.

The results for the two-particle cuts for the two independent orderings of the fermionic

legs are

(i) : F
(1)
Ooffset

(1φ
12
, 2ψ

3
, 3ψ̄

123
; q)
∣∣∣
2,s23

=−2 i2A(2ψ
3
, 3ψ̄

123
, `φ

14

2 , `φ
24

1 ) =−2i [2|`1|3〉 × ,

(ii) : F
(1)
Ooffset

(1φ
12
, 2ψ̄

123
, 3ψ

3
; q)
∣∣∣
2,s23

=−2 i2A(2ψ̄
123
, 3ψ

3
, `φ

14

2 , `φ
24

1 ) =−2i 〈2|`2|3]× ,

(2.21)

where we denote the m-particle cut of an L-loop form factor of an operator O in a generic

P 2-channel by

F
(L)
O (. . . ; q)

∣∣∣
m,P 2

. (2.22)

Both form factors are expressed in terms of a linear triangle which we refrain from reducing

to scalar integrals since we are working at the integrand level.10 Instead we will plug these

expressions into the two-particle cuts of the two-loop form factors shown in figure 6.

10Furthermore, both expressions would vanish upon performing the loop integration. Indeed by Lorentz

invariance, after Passarino-Veltman reduction one would have e.g. for the first form factor `1 → ap2 + bp3,

thus [2|`1|3〉 → 0 after the reduction.
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Figure 4. Two-particle cut contributing to the two-loop form factor in the s23-channel.

3 Two-loop minimal form factor 〈X̄Ȳ Z̄|TrX[Y, Z]|0〉

We proceed to compute the minimal form factor of OB = Tr(X[Y,Z]) at two loops with

the external state 〈X̄Ȳ Z̄|. The strategy of the calculation is as follows:

1. Thanks to the decomposition (2.6), we need only compute the form factor of the

operator Ooffset =−2 Tr(XZY ). This will be done in sections 3.1 and 3.2.

2. We then obtain the required form factor of OB by adding to our result that of

the half-BPS operator ÕBPS = Tr(X{Y,Z}), which is identical to the form factor

〈X̄X̄X̄|Tr(X3)|0〉 computed in [26], which we quote here for the reader’s convenience:

F
(2)

ÕBPS
=−

3∑
i=1

+ + + − .

(3.1)

In order to define the numerators we use the notation introduced in [26]: each dashed

line corresponds to a numerator factor equal to the total momentum flowing through

it, squared. For example, the third integral in (3.1) comes with the factor (si i+1)2.

3. In section 3.3 we summarise the complete result and perform the integral reduction.

3.1 Two-particle cuts of the two-loop form factor

We begin by considering the possible two-particle cuts of the two-loop form factor. There

are two types of cuts to consider, which are of the form F (0) ×A(1) and F (1) ×A(0).

3.1.1 Tree-level form factor × one-loop amplitude

The first two-particle cut we consider is of the form F (0) × A(1), and we will focus on the

s23-channel. The other cuts are obtained by cyclically permuting the external legs.

In this case the one-loop amplitude is

A(1) = A(0)
[
− s12s23 ×

]
, (3.2)
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Figure 5. Contribution to the two-loop form factor from scalars in the loop.

Figure 6. Two-loop form factors with internal fermions. The one-loop form factors on the

left-hand-side of the cuts were computed in (2.21).

hence the algebra of the previous section iterates and we get the following result for the cut:

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23

= −2 s23s2`1 × . (3.3)

3.1.2 One-loop form factor × tree-level amplitude

Next we consider two-particle cuts of the form F (1) × A(0). There are two options for the

states running in the loop: we can either have scalars, as shown in figure 5, or fermions, as

in figure 6. We consider these two types of contributions in turn.

Scalars in the loop. This case is illustrated in figure 5. The relevant one-loop form

factors were calculated in section 2.3, while the tree amplitudes entering the cuts are

(i) : A(2φ
23
, 3φ

31
, `φ

24

2 , `φ
14

1 ) = i
〈2`2〉 〈3`1〉
〈3`2〉 〈`12〉

= −i
(

1 +
s23

2(`1 · p2)

)
,

(ii) : A(2φ
23
, 3φ

31
, `φ

14

2 , `φ
24

1 ) = i .

(3.4)

– 11 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

This results in the following possibilities:

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣scalars

2,s23

= −4×

[
+

+

]
− 2×

[
s1`2 × + s1`1 ×

]

− 2 s23 ×

[
+ + +

]
.

(3.5)

Note that all the topologies which have a one-loop sub-amplitude containing triangles or

bubbles have to cancel as a consequence of the amplitude no-triangle theorem [39] — these

are the integrals number 3, 6 and 7 in (3.5). This cancellation occurs after adding the

contribution from fermions running in the loop, which we compute now.

Fermions in the loop. The contribution from fermions in the loop are shown in figure 6.

We use the expressions for the one-loop form factors given in (2.21)11 and amplitudes,

graphically represented as:

F
(1)
Ooffset

(1φ
12
,−`ψ

3

1 ,−`ψ̄
123

2 ; q) = 2i[`1|`4|`2〉 × , (3.6)

F
(1)
Ooffset

(1φ
12
,−`ψ̄

123

1 ,−`ψ
3

2 ; q) = 2i〈`1|`3|`2]× , (3.7)

A(2φ
23
, 3φ

31
, `ψ

4

2 , `ψ̄
124

1 ) = −i[`2|3|`1〉 × , (3.8)

A(2φ
23
, 3φ

31
, `ψ̄

124

2 , `ψ
4

1 ) = −i〈`2|2|`1]× . (3.9)

11We added an extra minus sign to every expression to take into account the reversal of direction of `1
and `2 according to the following practical prescription [40]: λ−P = −λP , λ̃−P = λ̃P , η−P = ηP .
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We obtain the following results for the cuts shown in figure 6:

(i) : − i2 F (1)
Ooffset

(1φ
12
,−`ψ

3

1 ,−`ψ̄
123

2 ; q)×A(2φ
23
, 3φ

31
, `ψ

4

2 , `ψ̄
124

1 )

= 2 [`1|`4|`2〉[`2|3|`1〉 ×
(3.10)

(ii) : − i2 F (1)
Ooffset

(1φ
12
,−`ψ̄

123

1 ,−`ψ
3

2 ; q)×A(2φ
23
, 3φ

31
, `ψ̄

124

2 , `ψ
4

1 )

= 2 〈`1|`3|`2]〈`2|2|`1]× ,
(3.11)

where for convenience we have labeled the additional internal momenta as k and h, and

we have also multiplied the result of the cut by (−1) from the fermion loop. Note that `1
and `2 are cut, while `3, `4, k and h are off shell.

Combining (3.10) and (3.11) we obtain

[
(3.10) + (3.11)

]
= 2

[
Tr+(2 `1`4`2) + Tr+(2 `2`4`1)

]
× , (3.12)

where we used momentum conservation `1 + `2 = `3 + `4 = −p2 − p3 and the fact that

on the cut s2`1 = s3`2 . Next we evaluate the traces in (3.12) and expand the various

scalar products in terms of the inverse propagators appearing in the main topology above,

specifically using

2(`2 · `3) = 2(`1 · `4) + `23 − `24 = −h2 + `23 ,

2(`4 · `2) = s23 + h2 − `23 ,
2(p2 · `2) = −2(p2 · `1)− s23 = −k2 − s23 ,

(3.13)

where k2 = (p2 + `1)2 = 2(p2 · `1) and h2 = (`1− `4)2 = −2(`1 · `4) + `24. Doing so, we can

rewrite (3.12) and obtain the fermionic contribution to the two-particle cut of the two-loop
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form factors of Ooffset,

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣fermions

2,s23

=2
[
2k2h2+s23(k2+h2)−k2(`23+`24)−s23s2`4

]
× .

(3.14)

From (3.14) we can now proceed to work out the cut integrals contributing to the form

factor of Ooffset. We arrive at the result

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣fermions

2,s23

= 2s23 ×

[
+

]

− 2×

[
s23s3` × + + − 2×

]
.

(3.15)

We observe that the first, second and last integral in (3.15) precisely cancel the unwanted

contributions in (3.5).

3.1.3 Result of two-particle cuts

It remains to sum up the scalar and fermion contributions to the cut in question, given

in (3.5) and (3.15), respectively. The combined result is:

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23

= −2s23s3` × + 2s1`2 ×

+ 2s1`1 × − 2s23 ×

[
+

]

− 2×

[
+

]

− 4×

[
+

]
. (3.16)
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Note that the unwanted topologies which would lead to a violation of the amplitude no-

triangle theorem [39] have cancelled, as expected. We also observe that some of the nu-

merators in (3.16) are ambiguous due to the cut conditions, and will be determined from

three-particle cuts.

3.2 Three-particle cuts of the two-loop form factor

In this section we study the three-particle cuts of the form factor of the operator Ooffset

defined in (2.7) at two loops. This computation will allow us to fix ambiguities of the

numerators of integrals obtained from two-particle cuts and, in addition, provide additional

integrals which are not detected by two-particle cuts. We consider three-particle cuts in

the q2-channel in section 3.2.1, and in the s23-channel in section 3.2.2.

3.2.1 Three-particle cuts in the q2-channel

We begin by studying the three independent q2-channel cuts shown in figure 7.

The corresponding six-point scalar amplitudes are:

A(1φ
12
, 2φ

23
, 3φ

31
, 4φ

14
, 5φ

24
, 6φ

34
) = i

[
1

s126
+

1

s234
− 1

s16
+

s12

s16s126
+

s56

s16s234

]
,

A(1φ
12
, 2φ

23
, 3φ

31
, 4φ

24
, 5φ

34
, 6φ

14
) = i

[
1

s126
+

1

s234
− 1

s34
+

s23

s34s234
+

s45

s34s126

]
,

A(1φ
12
, 2φ

23
, 3φ

31
, 4φ

34
, 5φ

14
, 6φ

24
) = 0 ,

(3.17)

where to simplify the notation we have called the cut legs p4, p5 and p6. We can now

immediately read off the contributions to the three-particle cuts:12

F
(2)
Ooffset

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
3,q2

= −4×

[
+

]

+ 2×

[
+

]
− 2s12 × − 2s23 ×

− 2s1` × − 2s3` × . (3.18)

Two observations are in order. Firstly, new topologies have appeared, which do not have

two-particle cuts. Furthermore, the ambiguities we had found in some of the numerators

of topologies identified using two-particle cuts have now been resolved.

12Recall that Ooffset = −2Tr(XZY ), and note that in the cuts the factor of i from the amplitude cancels

with the factor of i3 from the three propagators.
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Figure 7. Three-particle cuts in the the q2-channel.

Figure 8. Three cut diagrams for the case of a single gluon running in one of the internal loop

legs. There are three more diagrams where the internal gluon has the opposite helicity. These are

obtained by parity conjugation of the diagrams in this figure.

As a final set of consistency checks, we now perform additional three-particle cuts in

the s23-channel.

3.2.2 Three-particle cuts in the s23-channel

In this cut, R-symmetry allows for two possibilities for the particles running in the loop,

namely two scalars and a gluon, or two fermions and a scalar. There are two distinct

situations to consider, namely

FMHV ×AMHV and FMHV ×AMHV . (3.19)

We now study the first case in detail, while the second can be obtained by just interchanging

〈·, ·〉 ↔ [·, ·] and simply doubles up the contribution from the first case. As before, we focus

our attention on the operator Ooffset introduced in (2.7).

Gluons in the loop. The gluon can be exchanged in any of the three loop legs, as shown

in figure 8.

The corresponding integrands are

(i) : i3A(2φ
23
, 3φ

31
, 4+, 5φ

14
, 6φ

24
)×F (0)

Ooffset
(1φ

12
,−6φ

31
,−5φ

23
,−4−; q) =

2 〈35〉 [51]

〈34〉〈45〉 [54] [41]
,

(3.20)

(ii) : i3A(2φ
23
, 3φ

31
, 4φ

14
, 5+, 6φ

24
)×F (0)

Ooffset
(1φ

12
,−6φ

31
,−5−,−4φ

23
; q) =

2 〈46〉 [64]

〈45〉〈56〉 [54] [65]
,

(3.21)

(iii) : i3A(2φ
23
, 3φ

31
, 4φ

14
, 5φ

24
, 6+)×F (0)

Ooffset
(1φ

12
,−6−,−5φ

31
,−4φ

23
; q) =

2 〈25〉 [51]

〈56〉〈62〉 [16] [65]
.

(3.22)
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Figure 9. The first two diagrams with fermions in the loop. In our conventions, the Yukawa

couplings are of the form, schematically, Tr(φABψ̄Aψ̄B) and Tr(φABψ
AψB), where φAB is related

to φAB via (2.2).

As explained earlier, the three cases corresponding to the opposite helicity assignment

of the gluon, which corresponds to FMHV × AMHV are related to those discussed above,

FMHV × AMHV, by parity conjugation. The corresponding result is obtained upon inter-

changing 〈·, ·〉 ↔ [·, ·].

Fermions in the loop. Next we consider the situation where two of the loop legs are

fermionic. There are four diagrams corresponding to FMHV × AMHV, shown in figures 9

and 10. The integrands corresponding to the cuts in figure 9 are

(i) : i3A(2φ
23
, 3φ

31
, 4ψ

4
, 5ψ

1
, 6φ

24
)× F (0)

Ooffset
(1φ

12
,−6φ

31
,−5ψ̄

234
,−4ψ̄

123
; q) = 2

〈35〉〈64〉
〈34〉〈56〉s45

,

(3.23)

(ii) : i3A(2φ
23
, 3φ

31
, 4ψ

1
, 5ψ

4
, 6φ

24
)× F (0)

Ooffset
(1φ

12
,−6φ

31
,−5ψ̄

123
,−4ψ̄

234
; q) = − 2

s45
,

(3.24)

while for the cuts in figure 10 we get

(iii) : i3A(2φ
23
, 3φ

31
, 4φ

14
, 5ψ

4
, 6ψ

2
)× F (0)

Ooffset
(1φ

12
,−6ψ̄

134
,−5ψ̄

123
,−4φ

23
; q) = − 2

s56
, (3.25)

(iv) : i3A(2φ
23
, 3φ

31
, 4φ

14
, 5ψ

2
, 6ψ

4
)× F (0)

Ooffset
(1φ

12
,−6ψ̄

123
,−5ψ̄

134
,−4φ

23
; q) =

2

s56

〈25〉〈46〉
〈45〉〈62〉

.

(3.26)

Again, there are four more diagrams corresponding to FMHV×AMHV which can be obtained

using parity conjugation.

Combining the terms. We can now convert the integrands into traces and dot products

and expand them. In doing so, it is useful to notice that the following combination of

integrands is particularly simple:

(3.20) + (3.23) + (3.24) +
1

2
(3.21) =

s1`

s45s14
+

s13

s34s14
− 1

s45
− s23s26

s34s45s56
− 1

s14
, (3.27)

where ` = −p4 − p5 and p4, p5 and p6 are the cut loop momenta. The corresponding

integrals are shown in (3.28) below. In uplifting the cut expression, we have to pay close
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Figure 10. The remaining two diagrams with fermions in the loop.

attention to the momentum flow: for example, in the expression above 1/s14 = 1/[2(p1 ·p4)]

should be uplifted to the propagator −1/(p1−p4)2 since p1 and p4 flow in the same direction

(see figure 9). Keeping these additional signs in mind we arrive at the the following list of

integrals:

−s1` × − s13 × − − s23s26 × + ,

(3.28)

Similarly, we single out the following combination

(3.22) + (3.25) + (3.26) +
1

2
(3.21) =

s1`

s56s16
+

s12

s16s26
− 1

s56
− s23s34

s45s56s26
− 1

s16
, (3.29)

where ` = −p5 − p6. This leads to the integrals shown below,

−s1` × − s12 × − − s23s34 × + .

(3.30)

The complete contribution of the three-particle cut in the s23-channel is then obtained by

adding (3.28) and (3.30), and multiplying the result by two to take into account the second

helicity configuration corresponding to FMHV ×AMHV.

3.3 Summary and integral reduction

We now summarise the result of our calculation and present the result for the form factor

of OB = Tr(X[Y,Z]), which includes also the half-BPS component ÕBPS = Tr(X{Y,Z})
computed in [26] and quoted in (3.1). The integral basis is shown in table 1. In terms of
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I1(i) I2(i) I3(i) I4(i)

I5(i) I6(i) I7(i) I8(i)

I9(i) I10(i) I11(i) I12(i)

I13(i) I14(i) I15(i) I16(i)

Table 1. Integral basis for the two-loop form factor F
(2)
OB

(1φ
12

, 2φ
23

, 3φ
31

; q). Note that the integrals

{I1(i), . . . , I5(i)} correspond precisely to the BPS case, shown in eq. (3.25) of [26]. We use the same

notation as in [26]: factors of sij/sijk in the numerators are denoted by a dashed line intersecting

two/three lines whose sum of momenta square to the corresponding kinematic invariant.

this basis, the two-loop minimal form factor of OB is given by

F
(2)
OB

(1φ
12
, 2φ

23
, 3φ

31
; q) =−

4∑
i=1

Ii(1) + I5(1)− 2×
[ 10∑
i=6

Ii(1) − I11(1) − I12(1)

+ I13(1) + I14(1)

]
− 4×

[
I15(1) + I16(1)

]
+ cyclic(1, 2, 3) .

(3.31)
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Some of the integrals appearing in (3.31) are master integrals and we can proceed to substi-

tute their expressions from [41, 42]. The remaining ones will be reduced using a particular

integration-by-parts algorithm implemented in the Mathematica package LiteRed [43, 44].

Using this package we find the following reductions:

=
4(ε− 1)(3ε− 2)(3ε− 1)

ε2si i+1(2ε− 1)

− 2(3ε− 1)

ε
− 2(ε− 1)

ε
, (3.32)

=
(3ε− 2)[si i+1ε+ (2ε− 1)(si i+2 + si+1 i+2)]

ε2(si i+2 + si+1 i+2)si i+1

− 2ε− 1

ε
− 3ε− 2

ε(si i+2 + si+1 i+2)
, (3.33)

=
3ε− 2

2ε(si i+2 + si+1 i+2)

(
−

)
,

=
3ε− 2

2ε si i+1
. (3.34)

These reduced integrals, with expressions known from [41, 42], can then be plugged

into (3.31) to give the final result of the two-loop form factor F
(2)
OB

(1φ
12
, 2φ

23
, 3φ

31
; q). We

refrain from writing the full expression for this form factor at present due to its consider-

able length. Instead, we consider next a much simpler quantity obtained from a standard

subtraction of the IR singularities — the remainder function.

4 Two-loop remainder of 〈X̄Ȳ Z̄|TrX[Y, Z]|0〉

4.1 Definition of the remainder

Two-loop remainder functions for the form factor of a generic operator O were introduced

in [6] similarly to the amplitude remainder function [45, 46],

R(2)
O := F

(2)
O (ε) − 1

2

(
F

(1)
O (ε)

)2 − f (2)(ε) F
(1)
O (2ε)− C(2) +O(ε) , (4.1)
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where f (2)(ε) := −2(ζ2 + ε ζ3 + ε2 ζ4) and C(2) = 4ζ4. As in [6, 26], the function f (2)(ε) is

the same as for amplitudes [45, 46]. Note that we have defined the remainder by taking

out a power of
g2Ne−εγE

(4π)2−ε = a(4πe−γE)ε (4.2)

per loop, where a is our ’t Hooft coupling, defined in (2.18). We also observe that in general

we would define the remainder for the helicity-blind ratio F
(2)
O /F

(0)
O as in [6] but in this

particular case this is not necessary since the tree-level form factor is equal to one. An

important aspect of this procedure [6, 45, 46] is that it removes the universal IR divergences

of the result. In the case of protected operators this gives a finite remainder while in the

present case, where we consider a bare, unprotected operator, we are still left with UV

divergences. In section 7 we will determine the appropriate renormalised operators and

form factors that have a UV and IR finite remainder function. Here however we wish to

take a first look at the IR-finite, but UV-divergent remainder function of the form factor

〈X̄Ȳ Z̄|Tr(X[Y,Z])|0〉.
Using the decomposition (2.6), the remainder function splits into a term formed com-

pletely by the form factor of ÕBPS and a piece which contains mixed terms involving ÕBPS

and Ooffset, which we denote by R(2)
non-BPS:

R(2)
OB

= R(2)
BPS + R(2)

non-BPS , (4.3)

where

R(2)
BPS = F

(2)

ÕBPS
(ε) − 1

2

(
F

(1)

ÕBPS
(ε)
)2 − f (2)(ε) F

(1)

ÕBPS
(2ε)− C(2) , (4.4)

R(2)
non-BPS = F

(2)
Ooffset

(ε) − F
(1)
Ooffset

(1

2
F

(1)
Ooffset

+ F
(1)

ÕBPS

)
(ε)− f (2)(ε) F

(1)
Ooffset

(2ε) . (4.5)

The remainder of the half-BPS operator Tr(X3) was computed in eq. (4.21) of [26] and

is identical to the BPS remainder appearing here. It is given by a function of uniform

transcendentality equal to four, written in terms of classical polylogarithms only. Explicitly,

its expression is

R(2)
BPS :=

3

2
Li4(u)− 3

4
Li4

(
−uv
w

)
+

3

2
log(w) Li3

(
−u
v

)
− 1

16
log2(u) log2(v)

− log2(u)

32

[
log2(u)− 4 log(v) log(w)

]
− ζ2

8
log(u)[5 log(u)− 2 log(v)]

− ζ3

2
log(u)− 7

16
ζ4 + perms (u, v, w) ,

(4.6)

where

u =
s12

q2
, v =

s23

q2
, w =

s31

q2
, u+ v + w = 1 . (4.7)

The new part is the non-BPS remainder defined in (4.5). It is IR finite, but it still has UV

divergences due to the fact that the operator inserted is not protected. Interestingly, it is
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given by a sum of functions of transcendentality ranging from three to zero, with no term

with maximal transcendentality:

R(2)
non-BPS =

c

ε
+

3∑
i=0

R(2)
non-BPS;3−i , (4.8)

where the subscript m in R(2)
non-BPS;m denotes the degree of transcendentality of the corre-

sponding term. For the coefficient of the UV pole we find

c = 18− π2 . (4.9)

The expression arising from replacing the integral functions appearing in the two-loop form

factor with the explicit results of [41, 42] can be considerably simplified using the concept

of the symbol of a transcendental function [47], while beyond-the-symbol terms can be

fixed numerically and/or analytically. At transcendentality three, we are guaranteed that

the whole result can be written in terms of classical polylogarithms only, and hence this

procedure is very simple to carry out. We find that the symbol of R(2)
non-BPS;3 is

S(2)
3 (u, v, w) = −2

[
u ⊗ (1−u) ⊗ u

1− u
+u ⊗ u⊗ v

1− u
+u ⊗ v⊗ uv

w2

]
+ perms (u, v, w) ,

(4.10)

while for the integrated expression (including beyond-the-symbol terms) we get

R(2)
non-BPS;3 = 2

[
Li3(u) + Li3(1− u)

]
− 1

2
log2(u) log

vw

(1− u)2
+

2

3
log(u) log(v) log(w)

+
2

3
ζ3 + 2 ζ2 log(−q2) + perms (u, v, w) . (4.11)

The transcendentality-two part of the remainder can also be simplified slightly. A short

calculation leads to the expression

R(2)
non-BPS;2 = −12

[
Li2(1− u) + Li2(1− v) + Li2(1− w)

]
− 2 log2(uvw) + 36 ζ2 . (4.12)

Finally, for the transcendentality-one and zero terms we have

R(2)
non-BPS;1 = −12 log(uvw)− 36 log(−q2) , (4.13)

R(2)
non-BPS;0 = 126 . (4.14)

Before concluding this section we would like to make two observations on the results we

have derived here.

1. First, we observe that the −π2 term in (4.9) comes from the last term on the right-

hand side of (4.5). It amounts to introducing a spurious UV divergence in the re-

mainder arising from the bubbles contained in the term F
(1)
Ooffset

(2ε). For the sake of

extracting the correct UV divergences and studying the mixing, this term must be

omitted, see section 7 for this discussion.

– 22 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

2. We stress the usefulness of the decomposition (2.6) and (4.3), which has the great

advantage of separating out completely the terms of maximal transcendentality from

the rest. This is in line with the findings of [30], where it was observed in the SU(2)

sector that a the finite remainder densities introduced there, and corresponding to

different “shuffling” for the R-symmetry fields flavours, have a highest degree of tran-

scendentality equal to 4−s with s being the shuffling in that remainder density. In the

present case, in a different sector, the operator Tr(XZY ) is associated with an exter-

nal state 〈X̄Ȳ Z̄|, which corresponds to s=1. Indeed we find that the corresponding

remainder is composed of terms with transcendentality ranging from three to zero.

4.2 A connection to the remainder densities in the SU(2) sector

We now establish a connection between the (UV-finite part of the) non-BPS remainder

R(2)
non-BPS and the remainder densities which have appeared in [30] in connection with

the calculation of the dilatation operator in the SU(2) sector. This is a closed subsector of

SU(2|3) and operators are built out of the complex scalars X and Y defined earlier in (1.5).

Two observations are in order here. Firstly we note that the remainder densities studied

in [30] correspond to operators which are products of fields without the trace. Secondly, the

operator we are considering is part of the larger SU(2|3) sector, hence we should not expect

to find similarities with results obtained in smaller sectors. In particular, in the SU(2|3)

sector the spin chain becomes dynamic i.e. the number of spin sites can fluctuate due to

length-changing interactions, something which cannot occur in the SU(2) sector. We will

see in section 7 that this is important for the renormalisation of the form factor of OB.

It was found in [30] that there are only three independent finite remainder densi-

ties, denoted in that paper as
(
R

(2)
i

)XXX
XXX

,
(
R

(2)
i

)XYX
XXY

, and
(
R

(2)
i

)Y XX
XXY

. The first density,(
R

(2)
i

)XXX
XXX

, has uniform transcendentality equal to four and is identical to the half-BPS

remainder computed in [26].
(
R

(2)
i

)XYX
XXY

contains terms of transcendentality ranging from

three to zero, while
(
R

(2)
i

)Y XX
XXY

contains terms of transcendentality two, one and zero.

The index i denotes the spin chain site, and the remainder densities depend on the three

variables

ui =
si i+1

si i+1 i+2
, vi =

si+1 i+2

si i+1 i+2
, wi =

si i+2

si i+1 i+2
, (4.15)

as well as on si i+1, si+2 i+2, si i+2 and si i+1 i+2 separately.

We have observed an interesting connection between these remainder densities and our

non-BPS remainder, namely

1

2
R(2)

non-BPS;3 = −
∑
S3

(
R

(2)
i

)XYX
XXY

∣∣∣
3

+ 6 ζ3 ,

1

2
R(2)

non-BPS;2 = −
∑
S3

[(
R

(2)
i

)XYX
XXY

−
(
R

(2)
i

)Y XX
XXY

]∣∣∣
2

+ 5π2 ,

1

2
R(2)

non-BPS;1 = −
∑
S3

[(
R

(2)
i

)XYX
XXY

−
(
R

(2)
i

)Y XX
XXY

]∣∣∣
1
,

1

2
R(2)

non-BPS;0 = −
∑
S3

[(
R

(2)
i

)XYX
XXY

−
(
R

(2)
i

)Y XX
XXY

]∣∣∣
0
, (4.16)
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Figure 11. Two-particle cut of the non-minimal form factor F
(1)
OF

with external state 〈X̄Ȳ Z̄|.

where f |m denotes the transcendentality-m part of the function f , the remainder densities

are evaluated with the replacements (ui, vi, wi) → (u, v, w), and S3 denotes permutations

of (u, v, w). It would be very interesting to explain this almost perfect coincidence of these

a priori unrelated quantities.

5 One-loop non-minimal form factor 〈X̄Ȳ Z̄|1
2
Trψαψα|0〉

In this section we compute one of the off-diagonal entries of the matrix of form fac-

tors (1.10), namely F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q), where OF = (1/2)Tr(ψαψα). Note that OF

is defined in a way that its minimal tree-level form factor 〈ψ̄123(1)ψ̄123(2)|OF (0)| 0 〉 is

equal to 〈21〉.
In order to do so we construct the one-loop integrand by considering two-particle cuts

in the q2 and s23 channels. We will find that the result is IR finite as it should be since this

form factor does not exist at tree level. However, UV divergences are expected reflecting

the mixing between OB and OF . This will be studied in detail in section 7.

5.1 Two-particle cut in the q2-channel

We start by computing the q2-channel of the form factor F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q). This is

shown in figure 11 and is given by

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,q2

= i2F
(0)
OF

(−5ψ̄
123
,−4ψ̄

123
; q)×A(1φ

12
, 2φ

23
, 3φ

31
, 4ψ

4
, 5ψ

4
)

= −i 〈45〉 × 〈13〉
〈34〉 〈51〉

= − i
2

(
s34s15 + s45s13 − s14s35

s34s15

)
. (5.1)

The corresponding topology is the box shown in figure 12.

We now rewrite the numerators in (5.1) using

s45 = s123 , s14 = −(s12 + s13 + s15) , s35 = −(s31 + s32 + s34) , (5.2)

which follow from momentum conservation
∑5

i=1 pi = 0 and the cut conditions
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Figure 12. The integral topology that appears in the q2-channel two-particle cut. For future

convenience we indicate explicitly the uncut propagators.

Figure 13. Two diagrams entering the two-particle cut in the s23-channel.

p2
4 = p2

5 = 0. Doing so (5.1) becomes

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,q2

=
i

2

(
s12s23

s34s15
+
s13 + s23

s34
+
s12 + s13

s15

)

=
i

2

[
s12s23 × + (s13 + s23)× + (s12 + s13)×

]
.

(5.3)

Note that in this cut no UV-divergent integrals have appeared and we have to add two

additional contributions from cyclic permutations of the external particles.

5.2 Two-particle cut in the s23-channel

We now compute the two-particle cut of F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q) in the s23-channel. There

are two possible diagrams to consider, shown in figure 13.

These two diagrams give rise to the master topologies shown in figure 14, with corre-

sponding numerators determined by the cuts.

In the cuts we need the tree-level non-minimal form factors F
(0)
OF

(1φ
12
, 2ψ

3
, 3ψ̄

123
; q)

and F
(0)
OF

(1φ
12
, 2ψ

123
, 3ψ̄

3
; q). The first of them has only one possible factorisation diagram

corresponding to a fermion splitting into an anti-fermion and a scalar, as shown in figure 15.

From this factorisation diagram we can infer the expression for the tree-level form

factor, which is given by

F
(0)
OF

(1φ
12
, 2ψ

3
, 3ψ̄

123
; q) = F

(0)
OF

(−4ψ̄
123
, 3ψ̄

123
; q)× i

s12
×AMHV(1φ

12
, 2ψ

3
, 4ψ

4
) . (5.4)
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Figure 14. Master topologies generated by the two diagrams of figure 13, respectively. The uncut

propagators are explicitly shown in order to bookkeep their sign reflecting the momentum flow.

For the coefficient of the box integral, only the diagram on the left can be compared with the box

detected in the q2-cut of figure 11 due to the ordering of external legs.

Figure 15. A factorisation diagram of the non-minimal form factor F
(0)
OF

(1φ
12

, 2ψ
3

, 3ψ̄
123

; q)

featuring in the two-particle cut of F
(1)
OF

(1φ
12

, 2φ
23

, 3φ
31

; q) in the s23-channel.

The anti-MHV amplitude can be easily determined using parity,

AMHV(1φ
12
, 2ψ

3
, 4ψ

4
) = −

[
AMHV(1φ

34
, 2ψ̄

124
, 4ψ̄

123
)
]∗

= i [24] . (5.5)

Using p4 = −(p1 + p2) we obtain the result

F
(0)
OF

(1φ
12
, 2ψ

3
, 3ψ̄

123
; q) =

[21] 〈13〉
s12

. (5.6)

We now compute the two diagrams of figure 13 separately.

Diagram (i). This diagram is given by

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(i)

=− i2 F (0)
OF

(1φ
12
,−5ψ

3
,−4ψ̄

123
; q)×AMHV(2φ

23
, 3φ

31
, 4ψ

4
, 5ψ̄

124
)

=− i

2

(s14s35 + s34s15 − s13s45

s15s34

)
. (5.7)

Using p2 + p3 + p4 + p5 = 0 and p2
4 = p2

5 = 0 on the cut, we can substitute

s45 = s23 , s35 = −(s34 + s32) , s14 = −(s12 + s13 + s15) , (5.8)
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thus (5.7) becomes

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(i)

= − i
2

[
2 +

s12 + s13

s15
+
s23

s34
+
s12s23

s15s34

]

=
i

2

[
− 2× + (s12 + s13)× − s23 × + s12s23 ×

]
.

(5.9)

Note that when the cut-integrals are uplifted to full Feynman integrals 1/s15, has to be

replaced by −1/(p1 − p5)2 due to the momentum flow, according to figure 14(i).

Diagram (ii). For diagram (ii) we need the form factor

F
(0)
OF

(1φ
12
,−5ψ̄

123
,−4ψ

3
; q) = F

(0)
OF

(1φ
12
,−4ψ

3
,−5ψ̄

123
; q) =

[41] 〈15〉
s14

. (5.10)

Its expression is given by

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(ii)

= −i2F (0)
OF

(1φ
12
,−5ψ̄

123
,−4ψ

3
; q)×AMHV(2φ

23
, 3φ

31
, 4ψ̄

124
, 5ψ

4
)

= i
[41] 〈15〉
s14

×
(
〈24〉
〈52〉

)
= −iTr+(1524)

s14s25
= i

Tr+(1534)

s14s34
, (5.11)

where we used momentum conservation in the last step. Expanding the trace and using a

set of replacements similar to (5.8),

s45 = s23 , s35 = −(s34 + s32) , s15 = −(s12 + s13 + s14) , (5.12)

we arrive at the result

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(ii)

= − i
2

[
2 +

s12 + s13

s14
+
s23

s34
+
s13s23

s14s34

]

=
i

2

[
− 2× + (s12 + s13)× − s23 × + s13s23 ×

]
,

(5.13)

which is identical to (5.9) apart from the box. Note that in the sum over cyclic permutations

of these two cuts three different one-mass boxes appear, each with their two possible

two-particle cuts. The cuts of the same boxes in the q2-channel are already accounted

for in (5.3).

Diagram (i) + Diagram (ii). Combining the results (5.9) and (5.13) and noting that

the coefficients of the integrals are consistent with those obtained from the q2-channel cut

– 27 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

in (5.3), we find

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23

= F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(i)

+F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q)
∣∣∣
2,s23,(ii)

=
i

2

[
− 4× + 2(s12 + s13)× − 2s23 ×

+ s12s23 × + s13s23 ×

]
. (5.14)

Note that the coefficient of the box integral with q inserted between p1 and p3 matches that

obtained in the q2-channel (5.3), namely (i/2)(s12s23). Moreover, the second box appearing

in (5.14) is detected in the q2-cut with cyclically shifted external momenta: 1 → 2→ 3→ 1.

5.3 Final result

Performing the cyclic sum we get the final result for the one-loop form factor:

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q) =

i

2

[
− 4× + 2(s13 + s23)×

− 2s23 × + s12s23 × + cyclic(1, 2, 3)

]
. (5.15)

Expanding the result to O(ε) we get

F
(1)
OF

(1φ
12
, 2φ

23
, 3φ

31
; q) =

6

ε
+ 12 +

π2

2
−

[
2 log(−s12)− 1

2
log2 s12

s23

− 2Li2

(
1− q2

s12

)
+ cyclic(1, 2, 3)

]
+O(ε) .

(5.16)

Importantly the infrared 1/ε2 poles have cancelled in the final result, which is expected

since the corresponding tree-level form factor does not exist. We can also rewrite the result

using the variables u, v ad w introduced in (4.7), getting13

F
(1)
OF

(1φ
12
, 2φ

23
3φ

31
; q) = 2

(−s12)−ε

ε(1− 2ε)
−
[
2Li2(1− u) + log u log v

]
+ ζ2 + cyclic(1, 2, 3) .

(5.17)

13Note that under renormalisation this quantity will combine with (4.12).
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Figure 16. Triple cut of the two-loop sub-minimal form factor 〈ψ̄ψ̄|OB |0〉. The second set of

identical diagrams, but with external legs 1 and 2 swapped has to be added, corresponding to the

fact that it leads to the same colour-ordering.

6 Two-loop sub-minimal form factor 〈ψ̄ψ̄|TrX[Y, Z]|0〉

Here we consider the second off-diagonal form factor in (1.10), namely the sub-minimal

form factor 〈ψ̄ψ̄|OB|0〉 with OB = Tr(X[Y,Z]) and 〈ψ̄ψ̄| being a shorthand notation for

〈1ψ̄123
2ψ̄

123 |. As it is clear from figure 16, this object exists only at two loops or more,

hence we only need to consider the two three-particle cuts presented here.

For the first diagram, the relevant amplitude (and hence the integrand, since the tree-

level form factor is just 1) is

(i) : A(1ψ̄
123
, 2ψ̄

123
, 3φ

24
, 4φ

14
, 5φ

34
) = −i [53]

[23] [51]
. (6.1)

For the second diagram, the relevant amplitude is

(ii) : A(1ψ̄
123
, 2ψ̄

123
, 3φ

14
, 4φ

24
, 5φ

34
) = i

[53]

[23] [51]
, (6.2)

which differs from (i) only by a sign. Taking into account the relative minus sign between

the two diagrams coming from the commutator and converting to momentum invariants

we get

(i)− (ii) :
1

[12]
· s35s12 − s25s13 + s15s23

s23s15
, (6.3)

where we have taken into account the factor of i3 coming from the cut propagators. We

note that for the half-BPS case of ÕBPS = Tr(X {Y, Z}) the two contributions would cancel

out exactly, which is consistent with the fact that the operator is protected.

The cut integrand corresponding to the expression in (6.3) is given by

F
(2)
OB

(1ψ̄
123
, 2ψ̄

123
; q)
∣∣∣
3,q2

=
1

[12]
(s35s12 − s25s13 + s15s23)× . (6.4)
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Lifting the cut momenta off-shell and performing the integral reductions using the LiteRed

package gives an ε-dependent prefactor times a “sunset” integral,

F
(2)
OB

(1ψ̄
123
, 2ψ̄

123
; q) =

1

[12]

2(3ε− 2)

2ε− 1
× . (6.5)

Note that any ambiguity associated with factors of p2
i , i = 4, 5, 6 in the numerator of (6.4)

would lead to a (vanishing) scaleless integral.

Finally, we proceed to substitute the expression for the sunset integral, which can be

found in [41]. We also perform a summation over the cyclic permutations of the internal

legs and note that having done so, the value of the five-point amplitude entering the cut

does not change and so the result picks up an overall factor of three. Finally, a further

factor of two is included corresponding to the two possible orderings of the external legs.

We proceed by expanding the results in powers of ε up to O(ε) and get

F
(2)
OB

(1ψ̄
123
, 2ψ̄

123
; q) =

6

[12]

ε2

(1− 2ε)2

Γ(1 + 2ε)Γ(−ε)3

Γ(2− 3ε)
(eγEε)2

(
−q2

)1−2ε

= − 6 〈12〉
[

1

ε
+ 7− 2 log

(
−q2

) ]
+O(ε) .

(6.6)

Note that this sub-minimal two-loop form factor has no lower-loop counterparts and, there-

fore, it has only a 1/ε UV divergence and no IR divergences.

7 Two-loop dilatation operator in the SU(2|3) sector

In this section we resolve the mixing between the two operators OB = Tr(X[Y, Z]) and

OF = (1/2)Tr(ψαψα) at two loops. Recall that all other dimension-three operators in the

SU(2|3) sector such as Tr(X3), Tr(X2Y ) and ÕBPS = Tr(X{Y,Z}) are half-BPS and do

not mix. Doing so we will reproduce the two-loop dilatation operator for these operators

in the SU(2|3) sector originally derived in [28].

We introduce the renormalised operatorsOren
F

Oren
B

 =

Z F
F Z B

F

Z F
B Z B

B

OF
OB

 , (7.1)

where OF and OB are the bare operators that we used to compute form factors in earlier

sections. The matrix of renormalisation constants Z, also called mixing matrix, is deter-

mined by requiring the UV-finiteness of the form factors of the renormalised operators

Oren
F and Oren

B with the external states 〈X̄Ȳ Z̄| and 〈ψ̄ψ̄|. The quantum correction to the

dilatation operator D, denoted by δD, is related to the mixing matrix Z as

δD = −µR
∂

∂µR
logZ , (7.2)
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where µR is the renormalisation scale. The relevant form factors from which we extract

the renormalisation constants are written below, and we also indicate the schematic form

of their perturbative expansions, as reflected by perturbative calculations:

〈ψ̄ψ̄|OF | 0 〉
∣∣∣
UV

:= 〈21〉
[
f (1)a(µR) + f (2)a2(µR) + · · ·

]
, (7.3)

〈X̄Ȳ Z̄|OF | 0 〉
∣∣∣
UV

:= a(µR)
[
g · h

]
+ · · · , (7.4)

〈ψ̄ψ̄|OB| 0 〉
∣∣∣
UV

:= 〈21〉a2(µR)

(
1

g
· k
)

+ · · · , (7.5)

〈X̄Ȳ Z̄|OB| 0 〉
∣∣∣
UV

:= b(1)a(µR) + b(2)a2(µR) + · · · , (7.6)

where the coefficients carrying the UV divergences are

f (1) =
f

(1)
1

ε
, f (2) =

f
(2)
2

ε2
+
f

(2)
1

ε
,

b(1) =
b
(1)
1

ε
, b(2) =

b
(2)
2

ε2
+
b
(2)
1

ε
,

h =
h1

ε
, k =

k1

ε
, (7.7)

and the running ’t Hooft coupling a(µR) defined in (2.14) counts the number of loops. We

have also been careful in distinguishing the coupling constant g from a(µR) on the right-

hand side of (7.3)–(7.6). Note that in (7.3) and (7.5) we have factored out the tree-level

form factor 〈1ψ̄2ψ̄|12Tr(ψψ)|0〉(0) = 〈21〉.
A few comments on these expansions are in order.

1. We have performed explicit perturbative calculations in previous sections that allow

us to extract (7.4)–(7.6), and we will shortly explain how to extract the UV-poles

for (7.3).

2. (7.4) is the result of a one-loop calculation (hence the single power of a(µR) involving

a five-point amplitude, which is O(g3) (hence the extra power of g).

3. (7.5) is the result of a two-loop calculation, again involving a five-point amplitude.

This is proportional to a(µR)2/g, which is O(g3) just like (7.4).

Expanding the mixing matrix Z as

Z = 1l +
∞∑
L=1

Z(L) := 1l +
∞∑
L=1

a(µR)Lz(L) , (7.8)

and requiring the finiteness of the renormalised form factors we arrive at

(z(1)) F
F = −f

(1)
1

ε
, (z(2)) F

F = −f
(2)
2 − (f

(1)
1 )2

ε2
− f

(2)
1

ε
,

(z(1)) B
B = −b

(1)
1

ε
, (z(2)) B

B = −b
(2)
2 − (b

(1)
1 )2

ε2
− b

(2)
1

ε
,

(z(1)) B
F = −g · h1

ε
, (z(2)) F

B = −1

g
· k1

ε
. (7.9)
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Note that from (7.8) Z(L) := a(µR)Lz(L). The logZ matrix has the form, up to O
(
a(µR)2

)
,

log(Z) ∼

(Z(1)) F
F +

[
(Z(2)) F

F −
1
2

(
(Z(1)) F

F

)2]
(Z(1)) B

F

(Z(2)) F
B (Z(1)) B

B +
[
(Z(2)) B

B −
1
2

(
(Z(1)) B

B

)2]


=


−a(µR)

f
(1)
1

ε
− a2(µR)

f
(2)
2 − 1

2(f
(1)
1 )2

ε2
−ga(µR) · h1

ε

−a(µR)

g
· k1

ε
−a(µR)

b
(1)
1

ε
− a2(µR)

b
(2)
2 − 1

2(b
(1)
1 )2

ε2

 .

(7.10)

We now move on to determine the various matrix elements. From (2.12) we read off

that b
(1)
1 = −6, and hence

(z(1)) B
B =

6

ε
. (7.11)

Next we compute (z(2)) B
B − (1/2)((z(1)) B

B )2. This quantity has already been calculated

in section 4, and we remark that we should drop the π2 term in (4.9), which is not of UV

origin. Doing so we find b
(2)
2 − (1/2)(b

(1)
1 )2 = 18/ε, and therefore

(z(2)) B
B − 1

2
((z(1)) B

B )2 = −18

ε
. (7.12)

Importantly, the 1/ε2 pole is absent in (7.12). Next, from the two-loop result of (6.6) we

obtain

(z(2)) F
B = −6

ε
· 1

g
, (7.13)

while from (5.16) we find

(z(1)) B
F = −6

ε
· g . (7.14)

Finally, we need to determine (z(1)) F
F and (z(2)) F

F . In order to do so, we recall that

OF appears as a component of the chiral part of the stress tensor multiplet operator (see

eq. (3.3) of [48]). Super form factors of this protected operator were first studied in [7]. The

components of this multiplet can be obtained by acting with four of the eight supercharges

QAα with A = 3, 4 on the bottom component Tr(X2) = Tr(φ2
12). Using the explicit super-

symmetry transformation in eq. (A.15) of [48], adapted to our conventions, and acting with

Qα3Q3α on the bottom component we find the following half-BPS descendent of Tr(φ2
12),

OBPS′ :=
1

2
Tr(ψαψα) + gTr(X[Y,Z]) = OF + gOB . (7.15)
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Since this operator is half-BPS the corresponding form factors are UV finite. Hence we

infer that

FOF
(1ψ̄

123
, 2ψ̄

123
; q)
∣∣∣
UV

= −gFOB
(1ψ̄

123
, 2ψ̄

123
; q)
∣∣∣
UV
, (7.16)

from which we get

(z(1)) F
F = −g(z(1)) F

B = 0 , (z(2)) F
F = −g(z(2)) F

B =
6

ε
. (7.17)

Using (7.16) we then obtain

(z(2)) F
F − 1

2

(
(z(1)) F

F

)2
=

6

ε
. (7.18)

We can now write down the matrix (7.10), with the result

log(Z) =


a2(µR)

6

ε
−a(µR) g

6

ε

−a
2(µR)

g
· 6

ε
a(µR) · 6

ε
− a2(µR) · 18

ε

+O
(
a(µR)3

)
. (7.19)

Finally, the dilatation operator up to two loops is

δD = lim
ε→0

[
− µR

∂

∂µR
log(Z)

]
= 12×


2a2 −a g

−2
a2

g
a− 6 a2

 , (7.20)

where we recall that our ’t Hooft coupling is defined in (2.18). The eigenvalues of this

matrix are the anomalous dimensions of the eigenstates of the dilatation operator. One of

them vanishes indicating the presence of a non-trivial additional protected operator. The

second one is

γK = 12 a − 48 a2 +O(a3) , (7.21)

in precise agreement with the one- and two-loop anomalous dimensions for the Konishi

supermultiplet. We can also write the corresponding eigenstates by diagonalising the trans-

pose of δD.14 One arrives at the two operators [35–38]

OBPS′ = OF + gOB , (7.22)

OK = OB −
gN

8π2
OF . (7.23)

The first one is the protected operator introduced in (7.15) above, while the second com-

bination is a descendant of the Konishi operator.

14Note that in this sector δD is not symmetric. A generic combination of the two operators OF and OB

can be written as vfOF + vbOB := (v,O), with vT := (vF , vB) and OT := (OF ,OB). Under the action of

the dilatation operator we have (v,O)→ (v, δDO) =
(
(δD)Tv,O

)
.
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8 Conclusions

There are several natural continuations of the work presented in this paper. In particular,

it would be interesting to consider wider classes of non-protected operators than those

considered here and in [30, 49]. Potentially this could lead to new insights and approaches

to integrability. For example, [29] established a direct link between minimal one-loop form

factors of general operators and Zwiebel’s form of the one-loop dilatation operator [34].

In [50] it was shown, using this form of the dilatation operator, how the Yangian sym-

metry [51] of the tree-level S-matrix of N = 4 SYM implies the Yangian symmetry of the

one-loop dilatation operator, which in turn is related to its integrability [52]. Clearly it

would be very interesting to generalise this to higher loops.

In [7], supersymmetric Ward identities were used to relate form factors of all the differ-

ent operators in the protected stress tensor multiplet to form factors of the chiral primary

operator Tr(X2) at any loop order. This led naturally to the definition of super form fac-

tors extending the Nair on-shell superspace used for amplitudes in N = 4 SYM. It would

be interesting to extend this to non-protected operators contained in larger multiplets.

Technically this is more challenging but first important steps in this direction have been

taken in recent papers [53, 54] and [55] where tree-level MHV form factors for arbitrary

unprotected operators were constructed using twistor actions and Lorentz harmonic chiral

superspace, respectively.

It seems plausible that a more detailed study of minimal and slightly non-minimal

two-loop form factors of non-protected operators will reveal a set of unique building blocks

with different degrees of transcendentality for form factors of arbitrary operators. One

piece of evidence is the equivalence of the two-loop, three-point form factor of Tr(X2)

and the maximally transcendental part of Higgs to three-gluon amplitudes [6]. It would

be natural to expect that the universality of the leading transcendental part extends also

to all length-two operators such as Tr(DFDF ) in any non-abelian gauge theory. Another

piece of evidence is that the minimal two-loop form factor of Tr(X3) [26] equals the leading

transcendentality part of the minimal two-loop form factors in the SU(2) sector [30] and in

the SU(2|3) sector studied in the present paper. We would expect that this universality also

applies to operators like Tr(F 3) in N =4 SYM, and possibly also in QCD and pure Yang-

Mills. Furthermore the intriguing relation of terms of lower transcendentality appearing in

the SU(2) and SU(2|3) sectors (see section 4) points at further unexpected regularities to

be explored. We intend to return to these issues in the very near future.
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A One-loop integral functions

Throughout the paper, we use the following conventions for the one-loop massless

scalar integrals in dimensional regularisation (upper/lower-case letters correspond to mas-

sive/massless momenta) [56]:

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− P )2
=

i

(4π)2−ε
rΓ

ε(1− 2ε)

(
−P

2

µ2

)−ε
,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− P )2
= − i

(4π)2−ε
rΓ

ε2

(
−P 2/µ2

)−ε
(−P 2)

,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p−Q)2(p− P )2
= − i

(4π)2−ε
rΓ

ε2

(
− P 2

µ2

)−ε
−
(
− Q2

µ2

)−ε
(−P 2)− (−Q2)

,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− q − r)2(p− P )2

= − i

(4π)2−ε
2rΓ

st

{
− 1

ε2

[(
− s

µ2

)−ε
+

(
− t

µ2

)−ε
−
(
− P 2

µ2

)−ε]

+Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+

1

2
log2

(
s

t

)
+
π2

6

}
,

where

rΓ =
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
.
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Figure 17. Three possibilities for a single gluon running on one of the internal loop legs for

Tr(XY Z) operator.

B Comparing half-BPS form factors

In this appendix we present explicit calculations confirming that the minimal form factor

of the half-BPS operator Tr(X{Y,Z}) has the same integrand, and hence remainder, as

that of the minimal form factor of Tr(X3) considered in [26].

We begin by considering the three diagrams in the gluonic contribution to the s23-

channel, presented in figure 17 below and corresponding to the Tr(XY Z) operator. The

corresponding integrands are

(i) : i3A(2φ
23

, 3φ
31

, 4+, 5φ
24

, 6φ
14

)× F (0)
Tr(XY Z)(1

φ12

, 6φ
23

, 5φ
31

, 4−; q) = − 〈25〉〈36〉 [51]

〈34〉〈45〉〈62〉 [54] [41]
,

(ii) : i3A(2φ
23

, 3φ
31

, 4φ
24

, 5+, 6φ
14

)× F (0)
Tr(XY Z)(1

φ12

, 6φ
23

, 5−, 4φ
31

; q) = − 〈24〉〈36〉〈46〉 [64]

〈34〉〈45〉〈56〉〈62〉 [54] [65]
,

(iii) : i3A(2φ
23

, 3φ
31

, 4φ
24

, 5φ
14

, 6+)× F (0)
Tr(XY Z)(1

φ12

, 6−, 5φ
23

, 4φ
33

; q) = − 〈24〉〈35〉 [15]

〈34〉〈56〉〈62〉 [16] [65]
.

(B.1)

We will combine these into “anti-commutator” pieces by appropriately adding to them

−1/2 of the terms that appear in expressions (3.20)–(3.22), corresponding to the Tr(XZY )

operator (removing the factor of −2). We then find for the diagrams in figure 8(i) and 17(i),

AC1 = −
(
〈25〉〈36〉+ 〈35〉〈62〉

)
[51]

〈34〉〈45〉〈62〉 [54] [41]
= − 〈23〉〈56〉 [51]

〈34〉〈45〉〈62〉 [54] [41]
. (B.2)

Similarly, we find for the diagrams in figure 8(ii) and 17(ii),

AC2 = − 〈23〉〈46〉〈46〉 [64]

〈34〉〈45〉〈56〉〈62〉 [54] [65]
, (B.3)

and finally, for the integrands of figure 8(iii) and 17(iii),

AC3 = − 〈23〉〈45〉 [15]

〈34〉〈56〉〈62〉 [16] [65]
. (B.4)

– 36 –



J
H
E
P
0
8
(
2
0
1
6
)
1
3
4

Figure 18. Four possibilities for fermions running on the internal loop legs for the Tr(XY Z)

operator.

Next we consider the fermionic contributions to this cut for the operator Tr(XY Z). These

are presented in figure 18 below. The corresponding integrands are:

(i) : i3A(2φ
23
, 3φ

31
, 4ψ

4
, 5ψ

2
, 6φ

14
)×F (0)

Tr(XY Z)(1
φ12
, 6φ

23
, 5ψ

134
, 4ψ̄

123
; q) =

〈25〉〈46〉〈36〉
〈34〉〈56〉〈62〉s45

,

(ii) : i3A(2φ
23
, 3φ

31
, 4ψ

4
, 5ψ

2
, 6φ

14
)×F (0)

Tr(XY Z)(1
φ12
, 6φ

23
, 5ψ̄

123
, 4ψ

134
; q) = − 〈42〉〈36〉

〈34〉〈62〉s45
,

(iii) : i3A(2φ
23
, 3φ

31
, 4φ

24
, 5ψ

4
, 6ψ

1
)×F (0)

Tr(XY Z)(1
φ12
, 6ψ

234
, 5ψ̄

123
, 4φ

31
; q) = − 〈36〉〈42〉

〈34〉〈62〉s56
,

(iv) : i3A(2φ
23
, 3φ

31
, 4φ

24
, 5ψ

1
, 6ψ

4
)×F (0)

Tr(XY Z)(1
φ12
, 6ψ̄

123
, 5ψ

234
, 4φ

31
; q) =

〈24〉〈35〉〈46〉
〈34〉〈62〉〈45〉s56

.

(B.5)

We combine them similarly to the gluonic case: for the commutator, diagrams of figure 9

and 10 should come with an overall minus sign. After some algebra we find, for figure 9

plus figure 18 (i) and (ii),

AC4 =
1

〈34〉〈56〉〈62〉s45

(
〈25〉〈36〉〈46〉 − 〈36〉〈42〉〈56〉 − 〈26〉〈35〉〈46〉+ 〈34〉〈56〉〈62〉

)
= − 〈23〉

〈34〉〈45〉〈56〉〈62〉
2〈46〉〈65〉

[54]
, (B.6)

and for figure 10 plus figure 18 (iii) and (iv),

AC5 = − 1

〈34〉〈45〉〈62〉s56

(
〈36〉〈42〉〈45〉 − 〈24〉〈35〉〈46〉+ 〈25〉〈46〉〈34〉 − 〈34〉〈45〉〈62〉

)
= − 〈23〉

〈34〉〈45〉〈56〉〈62〉
2〈45〉〈64〉

[65]
. (B.7)
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Finally we combine all the “anti-commutator” terms. After some manipulation, we get

5∑
i=1

ACi = − 〈23〉
〈34〉〈45〉〈56〉〈62〉

[ [51] 〈54〉2

[65] [16]
− 2
〈54〉〈64〉

[65]
+

[16] 〈64〉2

[65] [51]

− [14] 〈46〉2

[45] [51]
+ 2
〈46〉〈56〉

[45]
− [51] 〈56〉2

[45] [14]

]
, (B.8)

which is precisely the result of the s23-channel cut of operator Tr(X3) as presented in

eq. (3.16) of [26].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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