17 research outputs found

    Low-Complexity Strategies for Multiple Access Relaying

    Get PDF
    In this paper, we propose three low-complexity strategies for Multiple Access Relay Channel (MARC) based on the concept of bit-flipping model. By estimating the error rates of the links between the sources and the relay, and by utilizing the estimate as side information at the destination, it is shown that the proposed relay strategies are superior to the Decode-and-Forward (DF) relay strategy when all links are suffering from Additive White Gaussian Noise (AWGN). Furthermore, extrinsic information transfer (EXIT) analysis is used to track the convergence property with the aim of being able to search for suitable codes, the proposed relay strategies can achieve the performance close to those strategies utilizing relatively strong codes, such as turbo code or LDPC code, with iterative decoding at the relay in order to make intra links error free

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper published in Natur

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow

    The persistent shadow of the supermassive black hole of M 87

    Get PDF
    In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109 M⊙. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet

    有歪中継によるマルチプルアクセスリレー協調通信

    Get PDF
    Supervisor:松本 正情報科学研究科博

    Decoding and lossy forwarding based multiple access relaying

    No full text
    Abstract The goal of this thesis is to provide a unified concept of lossy-forwarding from the theoretical analysis to practical scheme design for the decode-and-forward-based multiple access relay channel (MARC) system. To improve the performance of MARC with the relay subject to resources or/and time constraints, the erroneous estimates output from simple detection schemes are used at the relay are forwarded and exploited. A correlation is then found between two sequences: one is the network-coded sequence sent from the relay, and the other is their corresponding exclusive-OR-ed information sequence. Several joint network-channel coding (JNCC) techniques are provided in which the correlation is utilized to update the log-likelihood ratio sequences during the iterative decoding process at the destination. As a result, the bit error rate (BER) and frame error rate (FER) are improved compared with those of MARC with select DF strategy (SDF-MARC). The MARC proposed above is referred to as erroneous estimates-exploiting MARC (e-MARC). To investigate the achieved FER performance of the e-MARC system, the outage probability for e-MARC with two source nodes is theoretically derived. We re-formulate the e-MARC system and identify its admissible rate region according to the Slepian-Wolf theorem with a helper. Then, the outage probability is obtained by a set of integral over the rate region with respect to the probability density functions of all the links' instantaneous signal-to-noise power ratios. It is found through simulations that, as one of the source nodes is far away from both the relay and destination, e-MARC is superior to SDF-MARC in terms of outage performance. Furthermore, a joint adaptive network-channel coding (JANCC) technique is then proposed to support e-MARC with more source nodes. A vector is constructed at the destination in JANCC to identify the indices of the incorrectly decoded source node(s), and re-transmitted to the relay for requesting additional redundancy. The relay performs network-coding only over the estimates specified by the vector upon receiving the request. Numerical results show that JANCC-aided e-MARC is superior to e-MARC in terms of FER and goodput efficiency. In addition, compared iterative decoding is performed at relay with SDF-MARC, the use of differential detection with JANCC-aided e-MARC significantly reduces the computational complexity and latency with only a small loss in the FER.Tiivistelmä Tämän väitöskirjan tarkoituksena on tuottaa yhtenäinen kokonaisuus häviöllisestä lähetyksestä pura-ja-lähetä (DF) -pohjaisessa monikäyttörelejärjestelmässä (MARC) sekä teoreettisesta että käytännöllisestä näkökulmasta. Parantaakseen resurssi- tai aikarajoitetun MARC-järjestelmän suorituskykyä, vastaanotin hyödyntää riippuvuussuhdetta releen välittämien informaatiosekvenssien virheellisten estimaattien ja suoraan lähteestä tulevien informaatiosekvenssien välillä (e-MARC). Työssä ehdotetaan useita yhdistetyn verkko -ja kanavakoodauksen menetelmiä (JNCC), joissa log-uskottavuussuhdesekvenssit iteratiivisen purkamisprosessin aikana päivitetään hyödyntämällä sekvenssien riippuvuussuhdetta vastaanottimessa. Tämän tuloksena sekä bittivirhe- että kehysvirhesuhdetta saadaan parannettua verrattuna selektiiviseen pura-ja-lähetä menetelmää käyttävään MARC-strategiaan (SDF-MARC). Kehysvirheen suorituskyvyn tarkastelua varten työssä johdetaan teoreettinen epäkäytettävyyden todennäköisyys e-MARC-menetelmälle kahden lähettimen tapauksessa. Lisäksi e-MARC-menetelmälle määritetään tiedonsiirtonopeusalue Slepian-Wolf -teoreeman mukaisesti. Tämän jälkeen saadaan epäkäytettävyyden todennäköisyys kaikkien linkkien signaalikohinasuhteen todennäköisyystiheysfunktion integraalina tiedonsiirtonopeusalueen yli. Simulointitulokset osoittavat e-MARC-menetelmän paremman epäkäytettävyyden todennäköisyyden verrattuna SDF-MARC-menetelmään silloin kun yksi lähettimistä on kaukana sekä releestä että vastaanottimesta. Mahdollistaakseen useamman lähteen käytön e-MARC-menetelmässä, työssä ehdotetaan lisäksi adaptiivinen yhdistetyn verkko-ja kanavakoodauksen menetelmä (JANCC). Siinä vastaanotin määrittää väärin purettujen sekvenssien lähettimet ja ilmoittaa ne vektorimuodossa takaisin releelle pyytääkseen näiden lähettimien informaation uudelleenlähetystä. Tämän jälkeen rele suorittaa verkkokoodauksen vain tunnistusvektorin määrittämien informaatiosekvenssien estimaatteihin perustuen. Tulokset näyttävät, että JANCC-menetelmää käyttävä e-MARC saavuttaa paremman kehysvirheen ja hyödyllisen läpäisyn tehokkuuden verrattuna e-MARC-menetelmään

    Outage Probabilities of Orthogonal Multiple-Access Relaying Techniques with Imperfect Source-Relay Links

    Get PDF
    An outage probability that is independent of signaling schemes is theoretically derived in this paper for an orthogonal multiple-access relay channel (MARC) system, where the estimates of the information sequences sent from source nodes, regardless of whether or not they are correctly decoded at the relay, are exclusive-OR (XOR)-network-coded and forwarded by the relay to the destination. The MARC system described above is referred to as estimates-exploiting MARC (e-MARC) in this paper for convenience. Following the probability derivation of e-MARC, comparisons are then made with the outage probability of the orthogonal MARC with the Select Decode-and-Forward relaying strategy (MARC-SDF). It is found through simulations that when one of the source nodes is far away from both the relay and the destination, the e-MARC system is superior to MARC-SDF in terms of outage performance. We further numerically calculate the outage probabilities for two special cases, and compare them with the probability of e-MARC. Furthermore, the impact of the source correlation on the outage probability of the e-MARC system is also investigated

    Distributed Joint Source-Channel Coding for Correlated Sources Using Non-systematic Repeat-Accumulate Based Codes

    Get PDF
    In this paper, we propose a technique for coding the data from multiple correlated binary sources, with the aim of providing an alternative solution to the correlated source compression problem. Using non-systematic repeat-accumulate based codes, it is possible to achieve compression which is close to the Slepian–Wolf bound without relying on massive puncturing. With the technique proposed in this paper, instead of puncturing, compression is achieved by increasing check node degrees. Hence, the code rate can be more flexibly adjusted with the proposed technique in comparison with the puncturing-based schemes. Furthermore, the technique is applied to distributed joint source-channel coding (DJSCC). It is shown that in many cases tested, the proposed scheme can achieve mutual information very close to one with the lower signal-to-noise power ratio than turbo and low density generator matrix based DJSCC in additive white Gaussian noise channel. The convergence property of the system is also evaluated via the extrinsic information transfer analysis

    Correlated Sources Transmission in Orthogonal Multiple Access Relay Channel: Theoretical Analysis and Performance Evaluation

    Get PDF
    In this paper, we consider the problem of transmitting two correlated binary sources over orthogonal multiple access relay channel (MARC), where two sources are communicating with a common destination with the assistance of a single relay. We assume decode-and-forward relaying strategy, and bit-wise exclusive or (XOR) network coding is performed at the relay node. First, a joint source-channel-network (JSCN) decoding technique is proposed to fully exploit the correlation between the sources, as well as the benefit of network coding. Then the achievable compression rate region of this system is derived based on the theorem for source coding with side information. It is found that the region is a 3-dimensional space surrounded by a polyhedron. Furthermore, the performance limit in Additive White Gaussian Noise (AWGN) channel and the outage probability in block Rayleigh fading channels are derived based on the achievable compression rate region. It is shown that the outage probability can be expressed by a set of triple integrals over the achievable compression rate region. The impact of source correlation on the performance of the system is investigated through asymptotic tendency analysis. The effectiveness of the proposed JSCN decoding technique and the accuracy of the theoretical analysis have been verified through a series of computer simulations, assuming practical channel codes. It is also shown that, as long as the source-relay links are perfect, the 2nd order diversity is always achieved with our proposed technique regardless of the source correlation
    corecore