285 research outputs found

    Immediate initiation of cART is associated with lower levels of cerebrospinal fluid YKL-40, a marker of microglial activation, in HIV-1 infection

    Get PDF
    OBJECTIVE: To characterize cerebrospinal fluid (CSF) YKL-40, a unique biomarker that reflects activation of microglial cells, in acute (AHI) and chronic HIV-1 infection (CHI) and to determine the effect of treatment initiation on levels of this marker. DESIGN: A cross-sectional study of two groups of HIV-infected participants at baseline and follow-up timepoints. METHODS: AHI (n = 33) and CHI (n = 34) participants underwent CSF and blood sampling before treatment initiation with combination antiretroviral therapy (cART) and at follow-up on cART in a subset of these individuals [6 months in AHI participants (n = 24), 1 year in CHI participants (n = 10)]. Measured parameters were analyzed at each timepoint. Analyses employed Mann–Whitney tests and Spearman correlations. RESULTS: Baseline median YKL-40 was higher in CHI than AHI (96844 versus 80754 ng/l; P = 0.011). Elevations in the CHI group relative to the AHI group persisted at follow-up despite treatment (87414 versus 66130 ng/l; P = 0.003). In untreated CHI, YKL-40 correlated with neopterin (r = 0.51, P = 0.0025), chemokine (CXC-motif) ligand-10 (r = 0.44, P = 0.011), and neurofilament light chain (r = 0.56, P = 0.0008) in CSF. CONCLUSIONS: This study is the first to describe the dynamics of CSF YKL-40 in two groups of HIV-infected individuals before and after cART and demonstrates the value of this marker in understanding HIV neuropathogenesis. The results suggest the utility of further exploring the prognostic value of YKL-40, particularly in individuals with early HIV infection or those initiating treatment during CHI

    Potential role of levocarnitine supplementation for the treatment of chemotherapy-induced fatigue in non-anaemic cancer patients

    Get PDF
    Ifosfamide and cisplatin cause urinary loss of carnitine, which is a fundamental molecule for energy production in mammalian cells. We investigated whether restoration of the carnitine pool might improve chemotherapy-induced fatigue in non-anaemic cancer patients. Consecutive patients with low plasma carnitine levels who experienced fatigue during chemotherapy were considered eligible for study entry. Patients were excluded if they had anaemia or other conditions thought to be causing asthenia. Fatigue was assessed by the Functional Assessment of Cancer Therapy-Fatigue quality of life questionnaire. Treatment consisted of oral levocarnitine 4 g daily, for 7 days. Fifty patients were enrolled; chemotherapy was cisplatin-based in 44 patients and ifosfamide-based in six patients. In the whole group, baseline mean Functional Assessment of Cancer Therapy-Fatigue score was 19.7 (±6.4; standard deviation) and the mean plasma carnitine value was 20.9 μM (±6.8; standard deviation). After 1 week, fatigue ameliorated in 45 patients and the mean Functional Assessment of Cancer Therapy-Fatigue score was 34.9 (±5.4; standard deviation) (P<.001). All patients achieved normal plasma carnitine levels. Patients maintained the improved Functional Assessment of Cancer Therapy-Fatigue score until the next cycle of chemotherapy. In selected patients, levocarnitine supplementation may be effective in alleviating chemotherapy-induced fatigue. This compound deserves further investigations in a randomised, placebo-controlled study

    High-resolution 3D X-ray imaging of intracranial nitinol stents

    Get PDF
    Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations

    Mathematical model of the dynamics of psychotherapy

    Get PDF
    The success of psychotherapy depends on the nature of the therapeutic relationship between a therapist and a client. We use dynamical systems theory to model the dynamics of the emotional interaction between a therapist and client. We determine how the therapeutic endpoint and the dynamics of getting there depend on the parameters of the model. Previously Gottman et al. used a very similar approach (physical-sciences paradigm) for modeling and making predictions about husband–wife relationships. Given that this novel approach shed light on the dyadic interaction between couples, we have applied it to the study of the relationship between therapist and client. The results of our computations provide a new perspective on the therapeutic relationship and a number of useful insights. Our goal is to create a model that is capable of making solid predictions about the dynamics of psychotherapy with the ultimate intention of using it to better train therapists

    IL-21 induces in vivo immune activation of NK cells and CD8+ T cells in patients with metastatic melanoma and renal cell carcinoma

    Get PDF
    PURPOSE: Human interleukin-21 (IL-21) is a class I cytokine previously reported in clinical studies on immune responsive cancers. Here we report the effects of systemic IL-21 therapy on the immune system in two phase 1 trials with this novel cytokine. EXPERIMENTAL DESIGN: Recombinant IL-21 was administered by intravenous bolus injection at dose levels from 1 to 100 microg/kg using two planned treatment regimens: thrice weekly for 6 weeks (3/week); or once daily for five consecutive days followed by nine dose-free days (5 + 9). The following biomarkers were studied in peripheral blood mononuclear cells (PBMC) during treatment: phosphorylation of STAT3, alterations in the composition of leukocyte subsets, ex vivo cytotoxicity, expression of effector molecules in enriched CD8(+) T cells and CD56(+) NK cells by quantitative RT-PCR, and gene array profiling of CD8(+) T cells. RESULTS: Effects of IL-21 were observed at all dose levels. In the 5 + 9 regimen IL-21 induced a dose dependent decrease in circulating NK cells and T cells followed by a return to baseline in resting periods. In both CD8(+) T cells and CD56(+) NK cells we found up-regulation of perforin and granzyme B mRNA. In addition, full transcriptome analysis of CD8(+) T cells displayed changes in several transcripts associated with increased cell cycle progression, cellular motility, and immune activation. Finally, cytotoxicity assays showed that IL-21 enhanced the ability of NK cells to kill sensitive targets ex vivo. CONCLUSIONS: IL-21 was biologically active at all dose levels administered with evidence of in vivo NK cell and CD8(+) T cell activation
    corecore