121 research outputs found

    Ototoxicity prevention during the SARS-CoV-2 (COVID-19) emergency

    Get PDF
    Aim of this paper is to remind the risk of ototoxicity when using chloroquine and hydroxychloroquine, in particular as prophylactic agents against SARS-CoV-2, during the pandemic. Healthy subjects taking chloroquine and hydroxychloroquine as prophylactic agents against SARS-CoV-2, during the pandemic, should be screened periodically, at least by Otoacoustic Emissions (OAEs) in order to detect early manifestations of possible cochlear ototoxic damages

    Vertigo and Dizziness in Children: An Update

    Get PDF
    Background: Vertigo and dizziness are relatively infrequent in paediatric patients, but specific data on the prevalence of these disorders are limited and influenced by various factors, including the age of the examined population. These conditions often have a significant impact on patients' and parents' quality of life. The aim of this paper is to investigate the prevalence of different aetiologies of vertigo in the paediatric population through a systematic review. Methods: According to PRISMA guidelines, a systematic review of the literature was performed. Medline and Embase were searched from January 2011 through to 10 September 2021. The search yielded 1094 manuscripts, which were reduced to 7 upon the application of inclusion criteria. Results: A total of 2470 paediatric patients were evaluated by the selected papers. Vestibular Migraine was the most frequently diagnosed condition, occurring alone or in association with other diseases. Overall, audio-vestibular disorders represented the second cause of vertigo, and the prevalence appears to increase according to age growth. Over the years, even though we assisted in the amelioration of diagnostic rates, partially related to an improvement in diagnostic tools, the aetiology of vertigo remains still unclear in a variable percentage of patients. Conclusion: Vertigo in children, despite being an uncommon symptom, requires a multidisciplinary approach, often involving Paediatricians, Neurologists and Otorhinolaryngologists. A comprehensive evaluation of children suffering from vertigo is crucial for establishing a successful therapy and reducing parental worries

    Statistical study of stacked/coupled site-controlled pyramidal quantum dots and their excitonic properties

    Get PDF
    We report on stacked multiple quantum dots (QDs) formed inside inverted pyramidal recesses, which allow for the precise positioning of the QDs themselves. Specifically, we fabricated double QDs with varying inter-dot distances and ensembles with more than two nominally highly symmetric QDs. For each, the effect of the interaction between QDs is studied by characterizing a large number of QDs through photoluminescence spectroscopy. A clear red-shift of the emission energy is observed together with a change in the orientation of its polarization, suggesting an increasing interaction between the QDs. Finally, we show how stacked QDs can help influencing the charging of the excitonic complexes

    Genetic Polymorphisms in Sudden Sensorineural Hearing Loss: An Update

    Get PDF
    Objective: To investigate the association between genetic polymorphisms and sudden sensorineural hearing loss (SSNHL). Most of the SSNHL cases still remain idiopathic, and several etiopathogenetic hypotheses, including a genetic predisposition, have been proposed. Methods: A literature review was conducted using different databases: Medline/PubMed, EMBASE, and CINAHL, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. All databases have been searched from May 2016 to April 2020. Results: Genetic susceptibility could represent a key element in the pathogenesis of SSNHL. A number of genetic polymorphisms related to (1) inner ear microvascular disease and endothelial dysfunction and (2) to inner ear oxidative stress and inflammation have been addressed in the current literature. Conclusions: The potential identification of a genetic profile related to SSNHL could provide a more accurate prognostic evidence of idiopathic SSNHL (ISSNHL), offering to the patients not only early-prevention strategies but eventually information on various inheritance modalities. © The Author(s) 2020

    Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures

    Get PDF
    Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs

    Tuning InP self-assembled quantum structures to telecom wavelength: A versatile original InP(As) nanostructure "workshop"

    Get PDF
    The influence of hydride exposure on previously unreported self-assembled InP(As) nanostructures is investigated, showing an unexpected morphological variability with growth parameters, and producing a large family of InP(As) nanostructures by metalorganic vapour phase epitaxy, from dome and ring-like structures to double dot in a ring ensembles. Moreover, preliminary microphotoluminescence data are indicating the capped rings system as an interesting candidate for single quantum emitters at telecom wavelengths, potentially becoming a possible alternative to InAs QDs for quantum technology and telecom applications

    TUSC (TUrbinate Surgery Classification): A Novel Classification Proposal for Turbinate Surgery

    Get PDF
    Aim of this manuscript is to propose a clear and easily applicable classification for turbinate surgery, based on the use of a numerical model, which could be introduced in the practice of Otolaryngologists and Maxillo-Facial surgeons.Applying this classification, it will be possible to offer an easy format when describing which turbinates are involved in a procedure, and to offer a quick method to record and analyse clinical data, also for scientific purpose

    SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphoid Enhancer Factor-1 (Lef-1) is a member of a transcription factor family that acts as downstream mediator of the Wnt/β-catenin signalling pathway which plays a critical role in osteoblast proliferation and differentiation. In a search for Lef-1 responsive genes in human osteoblasts, we focused on the transcriptional regulation of the SLUG, a zinc finger transcription factor belonging to the Snail family of developmental proteins. Although the role of SLUG in epithelial-mesenchymal transition and cell motility during embryogenesis is well documented, the functions of this factor in most normal adult human tissues are largely unknown. In this study we investigated SLUG expression in normal human osteoblasts and their mesenchymal precursors, and its possible correlation with Lef-1 and Wnt/β-catenin signalling.</p> <p>Results</p> <p>The experiments were performed on normal human primary osteoblasts obtained from bone fragments, cultured in osteogenic conditions in presence of Lef-1 expression vector or GSK-3β inhibitor, SB216763. We demonstrated that the transcription factor SLUG is present in osteoblasts as well as in their mesenchymal precursors obtained from Wharton's Jelly of human umbilical cord and induced to osteoblastic differentiation. We found that SLUG is positively correlated with RUNX2 expression and deposition of mineralized matrix, and is regulated by Lef-1 and β-catenin. Consistently, Chromatin Immunoprecipitation (ChIP) assay, used to detect the direct Lef/Tcf factors that are responsible for the promoter activity of SLUG gene, demonstrated that Lef-1, TCF-1 and TCF4 are recruited to the SLUG gene promoter "<it>in vivo</it>".</p> <p>Conclusion</p> <p>These studies provide, for the first time, the evidence that SLUG expression is correlated with osteogenic commitment, and is positively regulated by Lef-1 signal in normal human osteoblasts. These findings will help to further understand the regulation of the human SLUG gene and reveal the biological functions of SLUG in the context of bone tissue.</p
    corecore