244 research outputs found

    Neutrino propagation in matter using the wave packet approach

    Full text link
    We study the oscillations and conversions of relativistic neutrinos propagating in matter of variable density using the wave packet formalism. We show how the oscillation and coherence lengths are modified in comparison with the case of oscillations in vacuum. Secondly, we demonstrate how the equation of motion for two neutrino flavors can be formally solved for almost arbitrary density profile. We calculate finally how the use of wave packets alters the nonadiabatic level crossing probabilities. For the most common physical environments the corrections due to the width of the wave packet do not lead to observable effects.Comment: 21 pages, LATEX, no figure

    Semimechanistic Population Pharmacokinetic Model to Predict the Drug-Drug Interaction Between S-ketamine and Ticlopidine in Healthy Human Volunteers

    Get PDF
    Low-dose oral S-ketamine is increasingly used in chronic pain therapy, but extensive cytochrome P450 (CYP) mediated metabolism makes it prone to pharmacokinetic drug-drug interactions (DDIs). In our study, concentration-time data from five studies were used to develop a semimechanistic model that describes the ticlopidine-mediated inhibition of S-ketamine biotransformation. A mechanistic model was implemented to account for reversible and time-dependent hepatic CYP2B6 inactivation by ticlopidine, which causes elevated S-ketamine exposure in vivo. A pharmacokinetic model was developed with gut wall and hepatic clearances for S-ketamine, its primary metabolite norketamine, and ticlopidine. Nonlinear mixed effects modeling approach was used (NONMEM version 7.3.0), and the final model was evaluated with visual predictive checks and the sampling-importance-resampling procedure. Our final model produces biologically plausible output and demonstrates that ticlopidine is a strong inhibitor of CYP2B6 mediated S-ketamine metabolism. Simulations from our model may be used to evaluate chronic pain therapy with S-ketamine.Peer reviewe

    Neutrino Mass Texture with Large Mixing

    Full text link
    We propose a simple texture for the right-handed Majorana mass matrix to give a large ΜΌ−Μτ\nu_\mu-\nu_\tau mixing angle and hierarchical left-handed neutrino mass pattern. Consistently with the Dirac mass texture of the quark sector realizing the CKM mixing, this naturally explains the recent experimental results on both the atmospheric neutrino anomaly observed by the Superkamiokande collaboration and the solar neutrino problem. In this texture the right-handed Majorana mass of the third generation is of the order of GUT scale, which is favorable for reproducing the observed bottom-tau mass ratio.Comment: 10 pages, LaTeX, comments and references adde

    Light Unstable Sterile Neutrino

    Get PDF
    The three massless active (doublet) neutrinos may mix with two heavy and one \underline {light} sterile (singlet) neutrinos so that the induced masses and mixings among the former are able to explain the present data on atmospheric and solar neutrino oscillations. If the LSND result is also to be explained, one active neutrino mass eigenstate must mix with the light sterile neutrino. A specific model is proposed with the spontaneous and soft explicit breaking of a new global U(1)SU(1)_S symmetry so that a sterile neutrino will decay into an active antineutrino and a nearly massless pseudo-Majoron.Comment: Discussion and references adde

    A Mass Matrix for Atmospheric, Solar, and LSND Neutrino Oscillations

    Get PDF
    We construct a mass matrix for the four neutrino flavors, three active and one sterile, needed to fit oscillations in all three neutrino experiments: atmospheric, solar, and LSND, simultaneously. It organizes the neutrinos into two doublets whose central values are about 1 eV apart, and whose splittings are of the order of 10^(-3) eV. Atmospheric neutrino oscillations are described as maximal mixing within the upper doublet, and solar as the same within the lower doublet. Then LSND is a weak transition from one doublet to the other. We comment on the Majorana versus Dirac nature of the active neutrinos and show that our mass matrix can be derived from an S_2 x S_2 permutation symmetry plus an equal splitting rule.Comment: 4 pages, 0 figures, minor text change

    Spin-Flavour Oscillations and Neutrinos from SN1987A

    Get PDF
    The neutrino signal from SN1987A is analysed with respect to spin-flavour oscillations between electron antineutrinos, Μˉe\bar{\nu}_{e}, and muon neutrinos, ΜΌ\nu_{\mu}, by means of a maximum likelihood analysis. Following Jegerlehner et al. best fit values for the total energy released in neutrinos, EtE_t, and the temperature of the electron antineutrino, TΜˉeT_{\bar{\nu}_{e}}, for a range of mixing parameters and progenitor models are calculated. In particular the dependence of the inferred quantities on the metallicity of the supernova is investigated and the uncertainties involved in using the neutrino signal to determine the neutrino magnetic moment are pointed out.Comment: 14 pages, RevTeX, 4 figures, to appear in Physical Review

    Neutrino mass spectrum and neutrinoless double beta decay

    Get PDF
    The relations between the effective Majorana mass of the electron neutrino, meem_{ee}, responsible for neutrinoless double beta decay, and the neutrino oscillation parameters are considered. We show that for any specific oscillation pattern meem_{ee} can take any value (from zero to the existing upper bound) for normal mass hierarchy and it can have a minimum for inverse hierarchy. This means that oscillation experiments cannot fix in general meem_{ee}. Mass ranges for meem_{ee} can be predicted in terms of oscillation parameters with additional assumptions about the level of degeneracy and the type of hierarchy of the neutrino mass spectrum. These predictions for meem_{ee} are systematically studied in the specific schemes of neutrino mass and flavor which explain the solar and atmospheric neutrino data. The contributions from individual mass eigenstates in terms of oscillation parameters have been quantified. We study the dependence of meem_{ee} on the non-oscillation parameters: the overall scale of the neutrino mass and the relative mass phases. We analyze how forthcoming oscillation experiments will improve the predictions for meem_{ee}. On the basis of these studies we evaluate the discovery potential of future \znbb decay searches. The role \znbb decay searches will play in the reconstruction of the neutrino mass spectrum is clarified. The key scales of meem_{ee}, which will lead to the discrimination among various schemes are: mee∌0.1m_{ee} \sim 0.1 eV and mee∌0.005m_{ee} \sim 0.005 eV.Comment: 47 pages, 35 figure
    • 

    corecore